首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tin dioxide (SnO2) has attracted much attention in lithium‐ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next‐generation LIBs. Here, a novel solvent‐free approach to construct uniform metal–organic framework (MOF) shell‐derived carbon confined SnO2/Co (SnO2/Co@C) nanocubes via a two‐step heat treatment is developed. In particular, MOF‐coated CoSnO3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid‐phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF‐coated metal oxides. The as‐synthesized SnO2/Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g?1 after 100 cycles at 200 mA g?1 and excellent cycling stability with a retained capacity of 400 mAh g?1 after 1800 cycles at 5 A g?1. The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO2. This facile synthetic approach will greatly contribute to the development of functional metal oxide‐based and MOF‐assisted nanostructures in many frontier applications.  相似文献   

2.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

3.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

4.
Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g?1 at 50 mA g?1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g?1 at 1000 mAg?1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size.  相似文献   

5.
A self‐templated strategy is developed to fabricate hierarchical TiO2/SnO2 hollow spheres coated with graphitized carbon (HTSO/GC‐HSs) by combined sol–gel processes with hydrothermal treatment and calcination. The as‐prepared mesoporous HTSO/GC‐HSs present an approximate yolk‐double–shell structure, with high specific area and small nanocrystals of TiO2 and SnO2, and thus exhibit superior electrochemical reactivity and stability when used as anode materials for Li‐ion batteries. A high reversible specific capacity of about 310 mAh g?1 at a high current density of 5 A g?1 can be achieved over 500 cycles indicating very good cycle stability and rate performance.  相似文献   

6.
γ‐Graphyne is a new nanostructured carbon material with large theoretical Li+ storage due to its unique large conjugate rings, which makes it a potential anode for high‐capacity lithium‐ion batteries (LIBs). In this work, γ‐graphyne‐based high‐capacity LIBs are demonstrated experimentally. γ‐Graphyne is synthesized through mechanochemical and calcination processes by using CaC2 and C6Br6. Brunauer–Emmett–Teller, atomic force microscopy, X‐ray photoelectron spectroscopy, solid‐state 13C NMR and Raman spectra are conducted to confirm its morphology and chemical structure. The sample presents 2D mesoporous structure and is exactly composed of sp and sp2‐hybridized carbon atoms as the γ‐graphyne structure. The electrode shows high Li+ storage (1104.5 mAh g?1 at 100 mA g?1) and rate capability (435.1 mAh g?1 at 5 A g?1). The capacity retention can be up to 948.6 (200 mA g?1 for 350 cycles) and 730.4 mAh g?1 (1 A g?1 for 600 cycles), respectively. These excellent electrochemical performances are ascribed to the mesoporous architecture, large conjugate rings, enlarged interplanar distance, and high structural integrity for fast Li+ diffusion and improved cycling stability in γ‐graphyne. This work provides an environmentally benign and cost‐effective mechanochemical method to synthesize γ‐graphyne and demonstrates its superior Li+ storage experimentally.  相似文献   

7.
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.  相似文献   

8.
Cobalt sulfide (CoS2) is considered one of the most promising alternative anode materials for high‐performance lithium‐ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfide intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS2 composite is prepared by using nano metal–organic framework (MOF) templates for high‐preformance LIBs. The as‐made ultrasmall CoS2 (15 nm) nanoparticles in N‐rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g?1, a capacity of 560 mA h g?1 is maintained after 50 cycles. Even at a current density as high as 2500 mA g?1, a reversible capacity of 410 mA h g?1 is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N‐rich porous carbon shells derieved from nanosized MOF precusors.  相似文献   

9.
TiO2 is a potential anode material for lithium‐ion batteries due to its high rate capability and high safety. Here, a controllable synthesis for hollow nanostructured TiO2, with heterostructured shells of TiO2(B) and anatase phases, is presented for the first time, by using a sequential templating approach. The hollow nanostructures can be easily controlled to produce core–shell and double‐shelled materials with different compositional ratios of anatase to TiO2(B) by tuning the synthetic conditions. When used as the anode materials for lithium‐ion batteries, a specific discharge capacity of 215.4 mAh g?1 for the double‐shelled anatase/TiO2(B) hollow microspheres is achieved at a current rate of 1 C (335 mA g?1) for the 100th cycle and shows high specific discharge capacities of 141.6 and 125.7 mAh g?1 at the high rates of 10 and 20 C over 1000 cycles. These results are due to the unique stable hollow multishelled structure, which has a high specific surface area, as well as the interface between the heterostructured anatase/TiO2(B) phases contributing a substantial number of lithium‐ion storage sites.  相似文献   

10.
Nanofibers with a unique structure comprising Sn@void@SnO/SnO2 yolk–shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres are prepared by applying the nanoscale Kirkendall diffusion process in conventional electrospinning process. Under a reducing atmosphere, post‐treatment of tin 2‐ethylhexanoate‐polyvinylpyrrolidone electrospun nanofibers produce carbon nanofibers with embedded spherical Sn nanopowders. The Sn nanopowders are linearly aligned along the carbon nanofiber axis without aggregation of the nanopowders. Under an air atmosphere, oxidation of the Sn–C composite nanofibers produce nanofibers comprising Sn@void@SnO/SnO2 yolk–shell nanospheres and hollow SnO/SnO2 and SnO2 nanospheres, depending on the post‐treatment temperature. The mean sizes of the hollow nanospheres embedded within tin oxide nanofibers post‐treated at 500 °C and 600 °C are 146 and 117 nm, respectively. For the 250th cycle, the discharge capacities of the nanofibers prepared by the nanoscale Kirkendall diffusion process post‐treated at 400 °C, 500 °C, and 600 °C at a high current density of 2 A g?1 are 663, 630, and 567 mA h g?1, respectively. The corresponding capacity retentions are 77%, 84%, and 78%, as calculated from the second cycle. The nanofibers prepared by applying the nanoscale Kirkendall diffusion process exhibit superior electrochemical properties compared with those of the porous‐structured SnO2 nanofibers prepared by the conventional post‐treatment process.  相似文献   

11.
Lithium–oxygen (Li–O2) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li‐ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li–O2 batteries. Herein, a new 3D hollow α‐MnO2 framework (3D α‐MnO2) with porous wall assembled by hierarchical α‐MnO2 nanowires is prepared by a template‐induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li–O2 batteries including the intrinsic high catalytic activity of α‐MnO2, more catalytic active sites of hierarchical α‐MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α‐MnO2 achieves a high specific capacity of 8583 mA h g?1 at a current density of 100 mA g?1, a superior rate capacity of 6311 mA h g?1 at 300 mA g?1, and a very good cycling stability of 170 cycles at a current density of 200 mA g?1 with a fixed capacity of 1000 mA h g?1. Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li–O2 batteries.  相似文献   

12.
Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet‐like carbon film supported core–shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g?1) after 200 cycles at 1 A g?1. The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core–shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet‐like composite.  相似文献   

13.
Transition metal oxides have recently received great attention for application in advanced lithium‐ion batteries (LIBs) and oxygen evolution reaction (OER). Herein, the ethylenediaminetetraacetic cobalt complex as a precursor to synthesize ultrafine Co3O4 nanoparticles encapsulated into a nitrogen‐doped carbon matrix (NC) composites is presented. The as‐prepared Co3O4/NC‐350 obtained by pyrolysis at 350 °C demonstrates superior rate performance (372 mAh g?1 at 5.0 A g?1) and high cycling stability (92% capacity retention after 300 cycles at 1.0 A g?1) as anode for LIBs. When evaluated as an electrocatalyst for OER, the Co3O4/NC‐350 achieves an overpotential of 298 mV at a current density of 10 mA cm?2. The NC‐encapsualted porous hierarchical structure assures fast and continuous electron transportation, high activity sites, and strong structural integrity. This works offers novel complex precursors for synthesizing transition metal–based electrodes for boosting electrochemical energy conversion and storage.  相似文献   

14.
Si/C yolk–shell structures have been developed to deal with the major issues associated with Si anodes: the huge volume changes and the low electrical conductivity. However, the fabrication process often involves expensive starting materials and/or simultaneously generates insulated SiC, which is harmful for Si anodes. Here, silica wastes from the optical fibers industry are used as starting materials to prepare high performance Si/C materials with Si@void@C yolk–shell structure via a rational designed Al2O3 coating assisted magnesiothermic process. The obtained yolk–shell Si@void@C materials have a capacity of more than 1450 mA h g?1 after 100 cycles at 0.4 A g?1. Thanks to the easily coated and removed Al2O3 layer, the general formation of SiC can be avoided which is beneficial for improving the rate performances, and a capacity of ≈800 mA h g?1 is still kept after 200 cycles at a high rate of 10 A g?1 with a low capacity loss of 0.08% per cycle.  相似文献   

15.
High‐performance of lithium‐ion batteries (LIBs) rely largely on the scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. In this work, the pine‐needle‐like Cu–Co skeleton is reported to support highly active Li4Ti5O12 (LTO) forming Cu–Co/LTO core–branch arrays via a united hydrothermal‐atomic layer deposition (ALD) method. ALD‐formed LTO layer is uniformly anchored on the pine‐needle‐like heterostructured Cu–Co backbone, which consists of branched Co nanowires (diameters in 20 nm) and Cu nanowires (250–300 nm) core. The designed Cu–Co/LTO core–branch arrays show combined advantages of large porosity, high electrical conductivity, and good adhesion. Due to the unique positive features, the Cu–Co/LTO electrodes are demonstrated with enhanced electrochemical performance including excellent high‐rate capacity (155 mAh g?1 at 20 C) and noticeable long‐term cycles (144 mAh g?1 at 20 C after 3000 cycles). Additionally, the full cell assembled with activated carbon positive electrode and Cu–Co/LTO negative electrode exhibits high power/energy densities (41.6 Wh kg?1 at 7.5 kW kg?1). The design protocol combining binder‐free characteristics and array configuration opens a new door for construction of advanced electrodes for application in high‐rate electrochemical energy storage.  相似文献   

16.

Nanostructured transition metal oxides are promising anode materials for lithium-ion batteries. Nevertheless, the problem of high volume expansion rate limits its further application. In this paper, we present a 3D hierarchical SnO2 hollow nanotubes material by calcining C@SnS2 materials in the air. This structure combines the advantages of both the hollow nanotubes and the outer staggered nanosheets structure, in which the hollow nanotube can provide more lithium ion transport channels, the space between the tubes can buffer the volume change, and the staggering nanosheets structure can effectively improve the relative specific surface area of the material and improve the storage capacity. As a result, the SnO2 hollow nanotubes anode exhibits the highly reversible capacity of 1079 mAh g?1 at a current density of 100 mA g?1, while the reversible specific capacity of 770 mAh g?1 was obtained after 100 cycles. The research results obtained in this work provide a feasible strategy for synthetic nanoscale transition metal oxide as high-performance lithium anode material.

  相似文献   

17.
Tin dioxide (SnO2) as an anode for lithium-ion batteries undergoes significant volume changes during cycling, limiting its commercial application. Herein, we propose a facile method to successfully synthesize yolk-shell-structured carbon spheres decorated with SnO2 (YS SnO2/C) by oxygen etching. SnO2 nanocrystals are distributed in both the core and the shell, and account for 79 % of the total weight of the composite. The gap between core and shell can tolerate the volume expansion during lithiation. The N-doped carbon matrix plays an important role in maintaining the structural integrity and improving the electrical conductivity. Benefiting from these advantages, the YS SnO2/C can provide a high reversible capacity of 771 mAh g−1 after 500 cycles at a current density of 2000 mA g−1.  相似文献   

18.
Micrometer‐sized spherical aggregates of Sn and Co components containing core–shell, yolk–shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large‐scale spray drying process. The Sn2Co3–Co3SnC0.7–C composite microspheres uniformly dispersed with Sn2Co3–Co3SnC0.7 mixed nanocrystals are formed by the first‐step reduction of spray‐dried precursor powders at 900 °C. The second‐step oxidation process transforms the Sn2Co3–Co3SnC0.7–C composite into the porous microsphere composed of Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn–Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn‐Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres for the 200th cycle at a current density of 1 A g?1 is 1265, 987, and 569 mA h g?1, respectively. The ultrafine primary nanoparticles with a core–shell structure improve the structural stability of the porous‐structured microspheres during repeated lithium insertion and desertion processes. The porous Sn–Sn2Co3@CoSnO3–Co3O4 microspheres with core–shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium‐ion batteries.  相似文献   

19.
Metal–organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self‐sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost‐efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal–organic frameworks of Ni‐Co‐BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3? x O4 multishelled hollow microspheres through a morphology‐inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer‐sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium‐ion batteries, Ni x Co3? x O4‐0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with an excellent high‐rate capability. Appropriate capacities of 832 and 673 mAh g?1 could also be retained after 300 cycles at large currents of 1 and 2 A g?1, respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs‐derived mixed metal oxides with multishelled hollow structures for progressive lithium‐ion batteries.  相似文献   

20.
Fe3S4 @ S @ 0.9Na3SbS4?0.1NaI composite cathode is prepared through one‐step wet‐mechanochemical milling procedure. During milling process, ionic conduction pathway is self‐formed in the composite due to the formation of 0.9Na3SbS4?0.1NaI electrolyte without further annealing treatment. Meanwhile, the introduction of Fe3S4 can increase the electronic conductivity of the composite cathode by one order of magnitude and nearly double enhance the ionic conductivities. Besides, the aggregation of sulfur is effectively suppressed in the obtained Fe3S4 @ S @ 0.9Na3SbS4?0.1NaI composite, which will enhance the contact between sulfur and 0.9Na3SbS4?0.1NaI electrolyte, leading to a decreased interfacial resistance and improving the electrochemical kinetics of sulfur. Therefore, the resultant all‐solid‐state sodium–sulfur battery employing Fe3S4 @ S @ 0.9Na3SbS4?0.1NaI composite cathode shows discharge capacity of 808.7 mAh g?1 based on Fe3S4@S and a normalized discharge capacity of 1040.5 mAh g?1 for element S at 100 mA g?1 for 30 cycles at room temperature. Moreover, the battery also exhibits excellent cycling stability with a reversible capacity of 410 mAh g?1 at 500 mA g?1 for 50 cycles, and superior rate capability with capacities of 952.4, 796.7, 513.7, and 445.6 mAh g?1 at 50, 100, 200, and 500 mA g?1, respectively. This facile strategy for sulfur‐based composite cathode is attractive for achieving room‐temperature sodium–sulfur batteries with superior electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号