首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analytical expressions for covariances of weak lensing statistics related to the aperture mass,   M ap  , are derived for realistic survey geometries such as the Supernova Acceleration Probe (SNAP) 1 for a range of smoothing angles and redshift bins. We incorporate the contributions to the noise due to the intrinsic ellipticity distribution and the effects of the finite catalogue size. Extending previous results to the most general case where the overlap of source populations is included in a complete analysis of error estimates, we study how various angular scales in various redshifts are correlated and how the estimation scatter changes with the survey parameters. Dependences on cosmological parameters and source redshift distributions are studied in detail. Numerical simulations are used to test the validity of various ingredients to our calculations. Correlation coefficients are defined in a way that makes them practically independent of cosmology. They can provide important tools to cross-correlate one or more different surveys, as well as various redshift bins within the same survey or various angular scales from the same or different surveys. The dependence of these coefficients on various models of underlying mass correlation hierarchy is also studied. Generalizations of these coefficients at the level of three-point statistics have the potential of probing the complete shape dependence of the underlying bi-spectrum of the matter distribution. A complete error analysis incorporating all sources of errors suggests encouraging results for studies using future space-based weak lensing surveys such as SNAP.  相似文献   

2.
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions  ξ±  and the aperture mass dispersion  〈 M 2ap〉  which can directly be constructed from weak lensing shear maps. We compare the efficiency with which these estimators can be used to constrain cosmological parameters. To this end we introduce the Karhunen–Loève (KL) eigenmode analysis techniques for weak lensing surveys. These tools are shown to be very effective as a diagnostics for optimizing survey strategies. The usefulness of these tools to study the effect of angular binning, the depth and width of the survey and noise contributions due to intrinsic ellipticities and number density of source galaxies on the estimation of cosmological parameters is demonstrated. Results from independent analysis of various parameters and joint estimations are compared. We also study how degeneracies among various cosmological and survey parameters affect the eigenmodes associated with these parameters.  相似文献   

3.
Weak lensing surveys are expected to provide direct measurements of the statistics of the projected dark matter distribution. Most analytical studies of weak lensing statistics have been limited to quasi-linear scales as they relied on perturbative calculations. On the other hand, observational surveys are likely to probe angular scales less than 10 arcmin, for which the relevant physical length-scales are in the non-linear regime of gravitational clustering. We use the hierarchical ansatz to compute the multipoint statistics of the weak lensing convergence for these small smoothing angles. We predict the multipoint cumulants and cumulant correlators up to fourth order and compare our results with high-resolution ray-tracing simulations. Averaging over a large number of simulation realizations for four different cosmological models, we find close agreement with the analytical calculations. In combination with our work on the probability distribution function, these results provide accurate analytical models for the full range of weak lensing statistics. The models allow for a detailed exploration of cosmological parameter space and of the dependence on angular scale and the redshift distribution of source galaxies. We compute the dependence of the higher moments of the convergence on the parameters Ω and Λ.  相似文献   

4.
We investigate the impact of the observed correlation between a galaxy's shape and its surrounding density field on the measurement of third-order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third-order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift   z m∼ 0.7  by ∼15 per cent. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with   z m∼ 0.4  we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third-order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.  相似文献   

5.
Future weak lensing surveys will directly probe the density fluctuation in the Universe. Recent studies have shown how the statistics of the weak lensing convergence field is related to the statistics of collapsed objects. Extending earlier analytical results on the probability distribution function of the convergence field, we show that the bias associated with the convergence field can be directly related to the bias associated with the statistics of underlying overdense objects. This will provide us with a direct method to study the gravity-induced bias in galaxy clustering. Based on our analytical results, which use the hierarchical Ansatz for non-linear clustering, we study how such a bias depends on the smoothing angle and the source redshift. We compare our analytical results with ray-tracing experiments through N -body simulations of four different realistic cosmological scenarios, and find a very good match. Our study shows that the bias in the convergence map strongly depends on the background geometry and hence can help us in distinguishing different cosmological models in addition to improving our understanding of the gravity-induced bias in galaxy clustering.  相似文献   

6.
Little is known about the statistics of gravitationally lensed quasars at large (7–30 arcsec) image separations, which probe masses on the scale of galaxy clusters. We have carried out a survey for gravitationally lensed objects, among sources in the FIRST 20-cm radio survey that have unresolved optical counterparts in the digitizations of the Palomar Observatory Sky Survey. From the statistics of ongoing surveys that search for quasars among FIRST sources, we estimate that there are about 9100 quasars in this source sample, making this one of the largest lensing surveys to date. Using broad-band imaging, we have isolated all objects with double radio components separated by 5–30 arcsec that have unresolved optical counterparts with similar BVI colours. Our criteria for similar colours conservatively allow for observational error and for colour variations due to time delays between lensed images. Spectroscopy of these candidates shows that none of the pairs are lensed quasars. This sets an upper limit (95 per cent confidence) on the lensing fraction in this survey of 3.3×10−4, assuming 9100 quasars. Although the source redshift distribution is poorly known, a rough calculation of the expected lensing frequency and the detection efficiencies and biases suggests that simple theoretical expectations are of the same order of magnitude as our observational upper limit. Our procedure is novel in that our exhaustive search for lensed objects does not require prior identification of the quasars in the sample as such. Characterization of the FIRST-selected quasar population will enable use of our result to constrain quantitatively the mass properties of clusters.  相似文献   

7.
We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the non-linear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the cosmic microwave background. Generalizing maximum-likelihood analysis to second order, we calculate the non-linear Fisher information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including non-linearity. Our methods are applied to a realistic model of a galaxy redshift survey, including non-linear evolution, galaxy bias, shot-noise and redshift-space distortions to second order. We find that including non-linearities allows all of the degeneracies between parameters to be lifted. Marginalized parameter uncertainties of a few per cent will then be obtainable using forthcoming galaxy redshift surveys.  相似文献   

8.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

9.
We present a comprehensive analysis for the determination of the confusion levels for the current and the next generation of far-infrared surveys assuming three different cosmological evolutionary scenarios. We include an extensive model for diffuse emission from infrared cirrus in order to derive absolute sensitivity levels taking into account the source confusion noise due to point sources, the sky confusion noise due to the diffuse emission, and instrumental noise. We use our derived sensitivities to suggest best survey strategies for the current and the future far-infrared space missions Spitzer , AKARI ( ASTRO-F ), Herschel and SPICA . We discuss whether the theoretical estimates are realistic and the competing necessities of reliability and completeness. We find the best estimator for the representation of the source confusion and produce predictions for the source confusion using far-infrared source count models. From these confusion limits considering both source and sky confusions, we obtain the optimal, confusion limited redshift distribution for each mission. Finally, we predict the cosmic far-infrared background (CFIRB), which includes information about the number and distribution of the contributing sources.  相似文献   

10.
We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry  ( u , g , r , i , z , y )  can be complemented by space-based near-infrared (near-IR) photometry  ( J , H )  , e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo- z method we evaluate the figure of merit for the dark energy parameters  ( w 0, w a )  . We consider a DUNE -like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3–1.7 if IR filters are added onboard DUNE . Furthermore we show that with IR data catastrophic photo- z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u -band data could be as effective as the IR. We also find that about  105–106  spectroscopic redshifts are needed for calibration of the full survey.  相似文献   

11.
Flexion is the significant third-order weak gravitational lensing effect responsible for the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion measurements can be used to measure galaxy halo density profiles and large-scale structure on non-linear scales, via galaxy–galaxy lensing, dark matter mapping and cosmic flexion correlation functions. We describe the origin of gravitational flexion, and discuss its four components, two of which are first described here. We also introduce an efficient complex formalism for all orders of lensing distortion. We proceed to examine the flexion predictions for galaxy–galaxy lensing, examining isothermal sphere and Navarro–Frenk–White (NFW) profiles and both circularly symmetric and elliptical cases. We show that in combination with shear we can precisely measure galaxy masses and NFW halo concentrations. We also show how flexion measurements can be used to reconstruct mass maps in two-dimensional projection on the sky, and in three dimensions in combination with redshift data. Finally, we examine the predictions for cosmic flexion, including convergence–flexion cross-correlations, and we find that the signal is an effective probe of structure on non-linear scales.  相似文献   

12.
We investigate strong gravitational lensing in the concordance ΛCDM cosmology by carrying out ray tracing along past light cones through the Millennium Simulation, the largest simulation of cosmic structure formation ever carried out. We extend previous ray-tracing methods in order to take full advantage of the large volume and the excellent spatial and mass resolution of the simulation. As a function of source redshift we evaluate the probability that an image will be highly magnified, will be highly elongated or will be one of a set of multiple images. We show that such strong lensing events can almost always be traced to a single dominant lensing object and we study the mass and redshift distribution of these primary lenses. We fit analytic models to the simulated dark haloes in order to study how our optical depth measurements are affected by the limited resolution of the simulation and of the lensing planes that we construct from it. We conclude that such effects lead us to underestimate total strong lensing cross-sections by about 15 per cent. This is smaller than the effects expected from our neglect of the baryonic components of galaxies. Finally we investigate whether strong lensing is enhanced by material in front of or behind the primary lens. Although strong lensing lines of sight are indeed biased towards higher than average mean densities, this additional matter typically contributes only a few per cent of the total surface density.  相似文献   

13.
Many recent studies have demonstrated that scaling arguments, such as the so-called hierarchical ansatz, are extremely useful in understanding the statistical properties of weak gravitational lensing. This is especially true on small angular scales (i.e. at high resolution), where the usual perturbative calculations of matter clustering no longer apply. We build on these studies in order to develop a complete picture of weak lensing at small smoothing angles. In particular, we study the full probability distribution function, bias and other multipoint statistics for the 'hot spots' of the convergence field induced by weak lensing, and relate these to the statistics of overdense regions in the underlying mass distribution. It is already known that weak lensing can constrain the background geometry of the Universe, but we further show that it can also provide valuable information about the statistics of collapsed objects and the physics of collisionless clustering. Our results are particularly important for future observations which will, at least initially, focus on small smoothing angles.  相似文献   

14.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   

15.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

16.
We investigate the effect of weak gravitational lensing in the limit of small angular scales where projected galaxy clustering is strongly non-linear. This is the regime likely to be probed by future weak lensing surveys. We use well-motivated hierarchical scaling arguments and the plane-parallel approximation to study multi-point statistical properties of the convergence field. These statistics can be used to compute the vertex amplitudes in tree models of hierarchical clustering; these can be compared with similar measurements from galaxy surveys, leading to a powerful probe of galaxy bias.  相似文献   

17.
We present the Lensed Mock Map Facility ( lemomaf ), a tool designed to perform mock weak-lensing measurements on numerically simulated chunks of the Universe. Coupling N -body simulations to a semi-analytical model of galaxy formation, lemomaf can create realistic lensed images and mock catalogues of galaxies, at wavelengths ranging from the ultraviolet to the submillimetre. To demonstrate the power of such a tool, we compute predictions of the source–lens clustering (SLC) effect on the convergence statistics, and quantify the impact of weak lensing on galaxy counts in two different filters. We find that the SLC effect skews the probability density function of the convergence towards low values, with an intensity which strongly depends on the redshift distribution of galaxies. On the other hand, the degree of enhancement or depletion in galaxy counts due to weak lensing is independent of the SLC effect. We discuss the impact on the two-point shear statistics to be measured by future missions like SNAP and LSST . The SLC effect would bias the estimation of σ8 from two-point statistics up to 5 per cent for a narrow redshift distribution of mean   z ∼ 0.5  , and up to 2 per cent in small angular scales for a redshift distribution of mean   z ∼ 1.5  . We conclude that accurate photometric redshifts for individual galaxies are necessary in order to quantify and isolate the SLC effect.  相似文献   

18.
The next generation of weak gravitational lensing surveys are capable of generating good measurements of cosmological parameters, provided that, amongst other requirements, adequate redshift information is available for the background galaxies that are measured. It is frequently assumed that photometric redshift techniques provide the means to achieve this. Here, we compare Bayesian and frequentist approaches to photometric redshift estimation, particularly at faint magnitudes. We identify and discuss the biases that are inherent in the various methods, and describe an optimum Bayesian method for extracting redshift distributions from photometric data.  相似文献   

19.
The use of photometric redshifts in cosmology is increasing. Often, however these photo- z are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. This overlooks useful information inherent in the full PDF. We introduce a new real-space estimator for one of the most used cosmological statistics, the two-point correlation function, that weights by the PDF of individual photometric objects in a manner that is optimal when Poisson statistics dominate. As our estimator does not bin based on the PDF peak, it substantially enhances the clustering signal by usefully incorporating information from all photometric objects that overlap the redshift bin of interest. As a real-world application, we measure quasi-stellar object (QSO) clustering in the Sloan Digital Sky Survey (SDSS). We find that our simplest binned estimator improves the clustering signal by a factor equivalent to increasing the survey size by a factor of 2–3. We also introduce a new implementation that fully weights between pairs of objects in constructing the cross-correlation and find that this pair-weighted estimator improves clustering signal in a manner equivalent to increasing the survey size by a factor of 4–5. Our technique uses spectroscopic data to anchor the distance scale and it will be particularly useful where spectroscopic data (e.g. from BOSS) overlap deeper photometry (e.g. from Pan-STARRS, DES or the LSST). We additionally provide simple, informative expressions to determine when our estimator will be competitive with the autocorrelation of spectroscopic objects. Although we use QSOs as an example population, our estimator can and should be applied to any clustering estimate that uses photometric objects.  相似文献   

20.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics.
We use a set of realistic image simulations produced by the Shear Testing Programme (STEP) collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity.
We find the biased aperture mass dispersion is reduced by  ∼20 per cent  at redshift ∼1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases σ8 and w 0 estimates by a few per cent. The power of tomography is significantly reduced when marginalizing over a range of realistic shape measurement biases. For a Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)-Wide-like survey,  [Ωm, σ8]  confidence regions are degraded by a factor of 2, whereas for a Kilo-Degree Survey (KIDS)-like survey the factor is 3.5. Our results are strictly valid only for KSB methods, but they demonstrate the need to marginalize over a redshift-dependent shape measurement bias in all future cosmological analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号