首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
环状侧电极火花塞较之传统单侧电极具有良好的点火性能,但是其头部易积炭的缺点限制了在内燃机中的使用寿命。为此,采用有限元数值模拟方法,以F6TH型多向点火火花塞为原型,将其几何结构及边界条件合理简化后,建立此火花塞头部的二维非稳态导热数学模型,运用ANSYS软件进行了热荷加载及温度场数值模拟,得出了四种不同尺寸组合情况下火花塞头部温度场分布情况,分析了环状侧电极的宽度、中心电极芯部半径及中心电极帽部半径尺寸这三个关键结构参数的改变对温度分布的影响趋势。最后利用模拟分析结果结合此产品具体使用情况的反馈报告,进而为此问题的解决提供了可行性较强的定性方案和建议。所得结论对于火花塞的结构设计具有实用参考价值。  相似文献   

2.
以Fluent软件为计算平台,针对侧插式等离子体点火燃烧器内部三维湍流流场及点火特性进行数值模拟,计算了煤粉混合物在通过整个燃烧器时内部温度场、着火过程成分变化等。分析了在给定来流条件下,等离子体功率对燃烧器出口横截面、中心纵截面温度场局部及整体分布和燃烧器中心轴线上温度特性曲线的影响。分析了点火燃烧过程中CO2、CO、H2O和O2的质量浓度分布与温度分布的关系。  相似文献   

3.
以Fluent软件为计算平台,针对中心轴插式等离子体点火燃烧器内部三维湍流流场及点火特性进行数值模拟,计算煤粉混合物在通过整个燃烧器时内部温度场、着火过程成分变化和煤粉的燃尽率等,分析其点火燃烧器内部的燃烧特征.分析了在给定来流条件下,不同等离子体喷枪功率下,点火煤粉燃烧器内中心截面温度分布;分析了点火煤粉燃烧器内CO、O2和CO2的质量浓度分布与温度分布的关系.  相似文献   

4.
通过分析火花塞等离子体产生机理及点火过程中等离子流能量的变化,设计出双点火间隙电极结构的等离子流火花塞及其点火电路,该火花塞工作时两个间隙同时点火形成双火核,点火能量增大.放电测量结果为,当特征长度L+=10mm,电极间隙h=1.0mm时,点火电压为19000V,最大峰值电流为200A,点火能量为103mJ.  相似文献   

5.
火花塞是发动机点火系统中的一个重要电器部件,广泛用于汽车、拖拉机、摩托车、操舟机以及各种类型的小型汽油机上。它的作用是将高压线圈感应出来的高压电,经过高压导线的传导,在火花塞的中心电极和侧电极之间,产生强烈的点火火花,从而点燃燃烧室内的燃料—空气混合气,推动活  相似文献   

6.
采用内热源结合固定电极壁温的方法替代实际电熔窑交变电场焦耳热的产生,通过数值求解基于雷诺时均的三维定常黏性N-S方程及能量方程,对某实际运行的六角形玻璃电熔窑内部的流场、温度场进行了数值模拟研究。通过与物理模拟试验结果相比对,验证了提出的内热源结合固定电极壁温方法的正确性,运用该方法对玻璃电熔窑内温度场及流场开展模拟研究,获得了其内部温度分布特点、涡系结构及流场细节,为玻璃电熔窑的设计及优化提供了一定参考。  相似文献   

7.
由于取消了气缸盖,对置活塞二冲程(OP2S)汽油机的火花塞只能布置于气缸侧壁。因此在单火花塞点火时,缸内火焰传播不对称,导致OP2S汽油机具有较明显的爆震倾向。为了有效地抑制爆震的发生,利用三维CFD软件对OP2S直喷汽油机在不同火花塞数目下缸内的燃烧过程进行了数值仿真,并结合试验研究了火花塞数目对混合气燃烧特性的影响,分析了不同火花塞数目对缸内燃烧压力、燃烧持续期及燃烧放热率的影响规律。研究结果表明,增加火花塞数量可以有效改善缸内的燃烧情况,而对侧布置双火花塞的布置形式为最佳方案。  相似文献   

8.
本文利用FLUENT 15. 0软件,在无特殊周期性边界条件的影响下,采用标准的k-epsilon模型成功模拟了Helmholtz型无阀自激脉动燃烧器的点火过程。模拟结果和前期实验现象结果吻合良好,为点火过程的分析提供了更多的数据支持。根据数值模拟结果探讨了Helmholtz型无阀自激脉动燃烧器整个点火过程中,燃烧器中压力和气体流速的变化和分布情况。分析了前期爆燃过程中脉动燃烧器中温度场的变化情况及回流现象。进一步佐证了爆燃能量集聚和烟气回流是脉动燃烧器成功点火的重要原因。  相似文献   

9.
朱玉祥 《内燃机》1993,(5):27-28
汽油机在使用中,常出现起动困难故障,其主要原因有点火系统、供油系统、密封性能三方面的因素。检查时,应从简到繁,由表及里逐步深入地进行。 1 检查点火系统故障 1.1 检查火花塞将火花塞从气缸盖上拧下,接上高压线,使其螺纹部分紧贴机体,用手快速转动起动轮,观察火花塞电极间跳火情况。 a.若电极间火花呈兰白色,光束集中,并发出:“啪、啪”响声。说明点火系统正常。 b.若电极间火花暗红色,光束分散,  相似文献   

10.
燃气轮机连续弧等离子点火器仿真与实现   总被引:1,自引:0,他引:1  
文章建立了适用于燃气轮机的连续弧等离子点火发生器稳定电弧的有限元数学模型,采用多物理场耦合的计算方式对等离子弧的温度场、电磁场、速度场以及电极表面的电流密度进行了数值模拟。按照数值模拟结果修改了等离子点火发生器喷嘴结构设计。通过试验,可实现小电流激发空气等离子体并获得稳定的等离子射流火焰,满足燃气轮机可靠点火的要求。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

14.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

15.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

16.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

17.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

18.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

19.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

20.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号