首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用纳米CaCO_3模板耦合原位KOH活化方法合成出超级电容器用多孔类石墨烯炭材料(PGCMs)。采用透射电子显微镜、拉曼光谱、X射线光电子能谱和N_2吸脱附技术对PGCMs进行了表征。结果表明,PGCMs的比表面积为1 542~2 305 m~2 g~(-1),其取决于模板、KOH/沥青的比例和活化温度。当模板/沥青比为1.5、KOH/沥青比为1.5,在850℃恒温1 h所得PGCM的超电容性能最佳。同时,PGCMs具有相互连接的类石墨烯炭层和丰富的分级短孔。在6 M KOH电解液中,0.05A g~(-1)电流密度下,超级电容器用PGCMs电极的比容高达293 F g~(-1);在20 A g~(-1)电流密度下,其电容保持为231 F g~(-1),显示了良好的倍率性能;经7 000次循环充放电后,其电容保持率为97.4%,展现了优异的循环稳定性。此外,在BMIMPF_6离子液体电解液中,0.05 A g~(-1)电流密度下,PGCMs电极的比容高达267 F g~(-1)。PGCMs超级电容器的能量密度达148.3 Wh kg~(-1),其相应的平均功率密度为204.2 W kg~(-1)。本工作为利用廉价的纳米CaCO_3模板合成高性能超级电容器用石油沥青基多孔类石墨烯炭材料提供了一种可行的方法。  相似文献   

2.
以中温煤沥青为原料,采用预脱灰和后脱灰两种不同工艺并结合KOH活化法造孔,制备了超级活性炭。系统研究了制备工艺对样品中灰分含量、微观形貌、孔结构以及电化学性能的影响。结果表明,采用后脱灰工艺制备的样品,与仅KOH活化而未进行酸溶液处理的样品相比,其灰分含量均明显降低,比表面积显著提升,比容量明显提高。而采用预脱灰工艺制备的样品,与后脱灰工艺相比,其超级活性炭灰分含量更低(≤0. 1 wt.%)、比表面积更大(2 722 m~2·g~(-1))、电化学性能优异。在0. 2 A·g~(-1)电流密度下,比容量为295 F·g~(-1),倍率性能良好(10 A·g~(-1)电流密度下仍为192 F·g-1)。循环稳定性优异,经5 000次恒流充放电循环之后,电容保持率高达99%,在对称超级电容器50 W·kg~(-1)的功率密度下,能量密度可达到9. 1 Wh·kg~(-1),表明其优异的储能性能。  相似文献   

3.
以菱角壳为前驱体,采用KOH化学活化法制备超级电容器用多孔炭,研究了不同碱炭比对多孔炭结构和电化学性能的影响。采用SEM、XRD、Raman、N_2吸脱附测试对多孔炭的微观结构进行表征,并利用循环伏安、恒流充放电、长循环、交流阻抗等方法考察其电容性能。结果表明,碱炭比为4时,多孔炭具有最高的比表面积(2 046.74 m~2/g)和最丰富的孔结构,以TEABF_4/PC为电解液组装成超级电容器,在0.1 A/g电流密度下,其比电容高达126.1 F/g,以0.5 A/g电流密度循环10 000次,其比电容仍保持92.6 F/g,展现出良好的电容性能。  相似文献   

4.
以硅藻土为模板,糠醇为碳源,合成了模板炭材料,并用KOH活化制备多孔炭材料。利用XRD、拉曼光谱、SEM及N_2吸附对其结构进行表征,并对比研究了活化前后炭材料的电化学性能。结果表明:活化后模板炭的无序度增加,电化学性能有显著的提高。在1 A·g~(-1)的电流密度下,活化后的多孔炭比容量为45.0~69.2 F·g~(-1);在20 A·g~(-1)充放电时,比电容保持率仍可达45%以上。说明活化后的多孔炭材料具有良好的电化学性能,是较好的双层电容器电极材料。  相似文献   

5.
以石油炼制副产品石油焦为原料,采用KOH活化法制备高比面积多孔炭,通过氨水水热处理对多孔炭进行表面渗氮改性。系统考察了KOH/石油焦比例(碱/炭比)对多孔炭孔结构及电化学性能的影响。结果表明多孔炭的比表面积、孔结构和电化学性能可以通过碱/炭比有效地调控。随着碱/炭比的增大,多孔炭的孔道逐渐增大,当碱炭比为3∶1时最大比表面积达到2 964 m~2·g~(-1)。当碱/炭比为5∶1时,多孔炭的比表面积和中孔率分别高达2 842 m~2·g~(-1)和67.0%,其在50 m A·g~(-1)电流密度下的比电容达到350 F·g~(-1)。氨水水热处理多孔炭,可以有效地在多孔炭表面引入氮原子,从而提高了多孔炭电极的电化学性能,尤其提高其在高电流密度下的比电容值。KOH活化以及氨水水热处理为制备高性能低成本石油焦基超级电容器电极材料提供了一种简单有效的方法。  相似文献   

6.
王德玄  王磊  于良民 《材料导报》2018,32(17):2907-2911, 2931
分别以过硫酸铵(APS)和N-N二甲基双丙烯酰胺(NMBA)作为引发剂和交联剂引发交联具有三维网络结构的聚丙烯酰胺/聚乙烯醇(PAM-PVA)水凝胶,将该水凝胶浸泡在6mol/L的KOH溶液中不同时间,制备凝胶聚合物电解质,并组装成双电层超级电容器。采用循环伏安、恒流充放电、交流阻抗等电化学测试技术对组装的超级电容器进行全面的性能研究,采用蓝电监测系统测试组装的超级电容器的稳定性。结果表明,以2.0g聚乙烯醇和10.0g丙烯酰胺反应制得的凝胶基体在吸收72h电解质溶液后组装的超级电容器性能最优,其比电容可达230F·g~(-1),5 000次充放电之后其循环保持率仍高达98%。  相似文献   

7.
以煤沥青为碳源,金属-有机框架化合物(MOF-5)为模板和辅助碳源,耦合KOH活化,制备了超级电容器用相互连接的中孔炭片状材料(IMCSs)。通过透射电镜、氮吸脱附、X射线衍射、X射线光电子能谱等技术对所得材料进行了表征。结果表明,所得IMCSs的比表面积介于860~1 046 m~2·g~(-1)之间。在优化的条件下,IMCSs在6 M KOH电解液中,0.05 A·g~(-1)电流密度下,其比容达到242 F·g~(-1)。由于IMCSs拥有可供离子快速传输的短的分级孔、可供离子吸附的大量的微孔和导电性好的相互连接的结构,因此,当电流密度增加到20 A·g~(-1)时,IMCSs的比容保持率为80.2%,显示了很好的速率性能。经10 000次循环充放电后,IM CSs的容量保持率仍达到94.2%,显示了优异的循环稳定性。此工作为合成高性能超级电容器用相互连接的中孔炭片提供了一个可行的方法,可以用廉价的稠环碳氢化合物,如,煤沥青和石油沥青为碳源。  相似文献   

8.
以中间相沥青为前驱体,经自挥发发泡法、KOH活化法制备的中间相沥青基活性泡沫炭作为超级电容器电极材料。采用扫描电镜、X射线衍射和低温(77K)N2吸附法对中间相沥青基活性泡沫炭的表面形貌和微观结构进行表征。中间相沥青基活性泡沫炭的比表面积为2700m2/g,总孔孔容为1.487cm3/g。通过恒流充放电、循环伏安和交流阻抗测试,考察了中间相沥青基活性泡沫炭作为超级电容器电极材料的电化学性能。在电流密度为0.02A/g时,中间相沥青基活性泡沫炭的比容量为240.48F/g,能量密度为33.4Wh/kg;在电流密度为5A/g时,比容量为166.68F/g,具有良好的电化学特性。  相似文献   

9.
稻壳基活性炭是一种具有多级孔道结构的电极材料,可以用于水系或有机电解液体系超级电容器,具有优良的比电容和功率特性。然而稻壳基活性炭用于超级电容器会出现严重的自放电问题。本文提出了一种简单的热处理稻壳基活性炭的改性方法,能够提高活性炭电极材料的电容值,并降低其自放电速率。在保持原有的多级孔结构基础上,增加了活性炭的介孔比例,减少了表面含氧官能团。改性前后的稻壳基活性炭材料组装的双电层超级电容器在0.5 A g~(-1)的电流密度下,质量比电容分别为116 F g~(-1)和147 F g~(-1),24 h自放电电压保持分别为75.2%和84.5%;在1.0 A g~(-1)条件下10 000圈恒流充放电循环后,电容保持率分别为85%和92%。  相似文献   

10.
智新  彭同江  孙红娟  汪建德 《材料导报》2017,31(14):16-21, 34
以制备的氧化石墨凝胶和苯胺-吡咯共聚物为原料,将二者进行混合超声分散,再以其混合分散液为前驱体,采用一步水热法制得三维石墨烯/苯胺-吡咯共聚复合物(3DAP)。利用X射线衍射(XRD)、拉曼光谱(Raman)、傅里叶变换红外(FT-IR)光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等研究了复合物的结构、形貌及电化学性能。结果表明:3DAP拥有丰富的三维多孔网状结构,并且颗粒状的苯胺-吡咯共聚物能够均匀地分布于孔隙间;作为电极材料,该复合物在0.5A·g~(-1)电流密度下比电容可达628.5F·g~(-1),即使在大电流密度(20A·g~(-1))条件下仍可高达384F·g~(-1),且在1A·g~(-1)电流密度下经过1 000次的充放电循环后比容量保持率高达86.1%,表现出良好的倍率特性和循环稳定性,其超级电容性能远优于单纯的石墨烯以及苯胺-吡咯共聚物。  相似文献   

11.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

12.
通过电化学沉积法制备得到聚苯胺/炭微球(PANI/CMS)复合电极材料,通过场发射扫描电子显微镜和红外光谱对PANI/CMS复合材料进行形貌和结构表征。并采用循环伏安、恒电流充放电、电化学阻抗谱及循环寿命测试等技术考察其电化学行为。结果表明:PANI均匀包覆于CMSs表面;在电流密度为1 A·g~(-1)时,复合材料的比电容达到206 F·g~(-1);PANI/CM S复合材料表现出优异的电化学稳定性。说明PANI/CMS复合材料有望作为电极材料用于超级电容器。  相似文献   

13.
以西瓜瓜瓤为碳源,采用两步碳化法制备三维石墨烯(3D-Fiberbased Graphene,3D G)材料,并使用水热法制备了CeO_2-MnO/3DG复合材料,以期获得比电容高,循环寿命好的石墨烯超级电容器电极材料。结果表明:3DG材料具有较高比表面积,最高可达到332m~2·g~(-1)。CeO_2-MnO/3DG复合材料具有三维导电网络结构,金属氧化物颗粒在石墨烯片层间生长均匀,粒径在10nm左右。电化学测试结果显示:在0.5 mol·L~(-1)的Na_2SO_4溶液中,电流密度1A·g~(-1),当摩尔比MnO∶CeO_2=4∶1,复合负载量在80%时得到的CeO_2-MnO/3D G复合材料拥有最高比电容,达308.5F·g~(-1),经过1 000次循环充放电测试比电容保持率为95.5%。CeO_2-MnO/3DG复合材料电化学性能的提高主要是因为两种金属氧化物复合负载与石墨烯的协同作用。  相似文献   

14.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

15.
本文以化学沉淀法制备出立方体Cu_2O,以Cu_2O为模板用水热离子交换法制备出纳米Cu_7S_4。利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Cu_7S_4进行测试,结果显示Cu_7S_4具有中空立方体结构,平均尺寸在550nm左右。使用三电极体系,采用循环伏安法、恒流充放电、电化学阻抗谱和循环稳定性分析研究了Cu_7S_4的电化学性能。测试结果表明,当电流密度为1A·g~(-1)时,Cu_7S_4的比电容为275F·g~(-1)。在电流密度为4A·g~(-1)时,Cu_7S_4循环1000次仍能保留94.8%的比电容,展示出良好的循环性能。  相似文献   

16.
微波法煤基活性炭的制备及其电化学性能研究   总被引:1,自引:1,他引:0  
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

17.
采用X射线衍射(XRD)、场发射扫描电镜(FESEM)对铜掺杂钴氧化物(CuxCo3-xO4)纳米粒子样品的结构和形貌进行了表征;用循环伏安,恒流充放电,交流阻抗等电化学方法对其电化学性能进行了测试。结果表明:钴和铜的摩尔比对目标产物的电化学性能有显著的影响,当钴和铜的摩尔比为2.67∶0.33时,样品的电化学性能最佳。在电流密度为1A/g时,比电容达到492F/g,且在3A/g的电流密度下,经过2000次充放电循环后,其比电容值没有衰减,表明Cu0.33Co2.67O4是一种良好的超级电容器电极材料。  相似文献   

18.
采用化学原位聚合的方法制备了聚吡咯/二氧化钛(PPy/TiO_2)复合物,其中聚吡咯和二氧化钛的质量比分别为1∶1、2∶1、3∶1、4∶1,将其作为电化学超级电容器的电极材料,采用扫描电子显微镜和X射线衍射仪研究了PPy/TiO_2的形貌和相组成,通过电化学测试研究了PPy/TiO_2的电化学性能.结果表明:TiO_2均匀地包覆在PPy基体中,PPy/TiO_2的电化学性能明显优于纯PPy;当PPy与TiO_2的质量比为3∶1时复合材料的电化学性能最佳,即在2 A/g充放电电流密度下,其比电容达到了255.68 F/g,比纯PPy提高了2倍左右;在1 A/g充放电电流密度下,循环充放电1 000圈之后PPy/TiO_2的比电容保持率为87.2%,纯PPy的比电容保持率仅为46.9%.  相似文献   

19.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

20.
以核桃壳为原料,经水热炭化-KOH活化制备活性炭,并将其用作超级电容器电极材料。采用低温氮气吸附、扫描电镜(SEM)及X射线光电子能谱(XPS)等手段系统研究核桃壳活性炭的微观结构及表面化学性质,并利用恒流充放电、循环伏安等探讨其对应电极材料的电化学性能。研究表明,在碱碳比为3∶1、活化温度为800℃、活化时间为1h的条件下,核桃壳水热炭经KOH活化可制备出比表面积为1 236m2/g、总孔容为0.804cm3/g、中孔比例为38.3%的活性炭。该核桃壳活性炭用作电极材料在KOH电解液中具有优异的电化学特性,其在50mA/g电流密度下的比电容可达251F/g,5 000mA/g电流密度下的比电容为205F/g,且具有良好的循环稳定性,1 000次循环后比电容保持率达92.4%,是一种比较理想的超级电容器电极材料。核桃壳活性炭优异的电化学性能与其相互贯通的层次孔结构和独特的含氧表面密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号