首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Retinitis Pigmentosa (RP) is a group of inherited retinopathies which affect approximately 1 in 4,000 individuals. The disorder can be classified on the basis of inheritance; dominant, recessive and X-linked forms have been well documented. The existence of genetic heterogeneity within autosomal dominant RP (adRP) had been previously demonstrated. As a result of extensive linkage studies in 2 large Irish families and 1 American pedigree three adRP genes have been mapped. adRP genes have been localised to chromosome 3q close to the rod photoreceptor gene, rhodopsin; to chromosome 6p close to another transmembrane photoreceptor gene, peripherin/RDS and to the pericentric region of chromosome 8, although the causative gene in this region has not yet been identified. Here we report the results of a linkage study in a Spanish family, who exhibit an early-onset form of adRP. The adRP gene segregating in this family has been excluded from the three known adRP loci on chromosomes 3q, 6p and 8 using a series of both intragenic microsatellite markers from the rhodopsin and peripherin/RDS genes and markers flanking the three known loci. These results provide definitive evidence for the existence of a fourth adRP locus, further emphasising the genetic heterogeneity that exists within adRP.  相似文献   

2.
We studied a large Danish family of seven generations in which autosomal dominant retinitis pigmentosa (adRP), a heterogeneous genetic form of retinal dystrophy, was segregating. After linkage had been excluded to all known adRP loci on chromosomes 3q, 6p, 7p, 7q, 8q, 17p, 17q and 19q, a genome screening was performed. Positive lod scores suggestive of linkage with values ranging between Z = 1.58-5.36 at theta = 0.04-0.20 were obtained for eight loci on proximal 1p and 1q. Close linkage without recombination and a maximum lod score of 7.22 at theta = 0.00 was found between the adRP locus (RP18) in this family and D1S498 which is on 1q very near the centromere. Analysis of multiply informative meioses suggests that in this family D1S534 and D1S305 flank RP18 in interval 1p13-q23. No linkage has been found to loci from this chromosomal region in six other medium sized adRP families in which the disease locus has been excluded from all known chromosomal regions harbouring an adRP gene or locus suggesting that there is (at least) one further adRP locus to be mapped in the future.   相似文献   

3.
We report the mapping of a sixth locus for autosomal dominantretinitis pigmentosa (adRP) to 19q13.4. After a total genomelinkage search using over 300 markers in a single large pedigree,marker loci on the long arm of chromosome 19 showed significantlinkage with the disease locus. Since the mapping informationfor the marker loci used in this study was derived from twodifferent genome maps, we established genetic distances betweenrelevant marker loci so that linkage information could be combinedfrom both maps. A conventional three point analysis betweenthe adRP phenotype and markers D19S180 and D19S214 gave a maximumlod score of 4.87. Combining data from these and other markers,we used the recently described multiple two point programmeFASTMAP to simulate a multipoint analysis of the full data set.This gave a lod score of 5.34 in the Interval between markersD19S180 and D19S214. Recently this laboratory has also reportedthe linkage of another form of retinal degeneration known ascone-rod dystrophy (CRD) to a genetically different set of markersfrom 19q. Linkage data presented here clearly supports the existenceof two separate retinal genes in this part of the genome.  相似文献   

4.
The aim of this work was to identify NRL mutations in a panel of 200 autosomal dominant retinitis pigmentosa (adRP) families. All samples were subjected to heteroduplex analysis of the three exons of the NRL gene, and HphI restriction digest analysis of exon 2 (to identify the S50T mutation). Families found to have the S50T mutation, and six additional larger pedigrees (which had previously been excluded from the other nine adRP loci) underwent linkage analysis using polymorphic markers located in the region of 14q11. HphI restriction analysis followed by direct sequencing of the amplified NRL exon 2 product demonstrated the presence of the NRL S50T sequence change in three adRP families. Comparison of marker haplotypes in affected individuals from these families with those of affected members of the original 14q11 linked family revealed a common disease haplotype for markers within the adRP locus. Recombination events observed in these families define an adRP critical interval of 14.9 cM between D13S72 and D14S1041. Linkage analysis enabled all six of the larger adRP pedigrees to be excluded from the 14q11 locus. The NRL S50T mutation represents another example of a 'founder effect' in a dominantly inherited retinal dystrophy. Identification of such 'founder effects' may greatly simplify diagnostic genetic screening and lead to better prognostic counselling. The exclusion of several adRP families from all ten adRP loci indicates that at least one further adRP locus remains to be found.  相似文献   

5.
Retinitis pigmentosa (RP) is the most frequent form of inherited retinopathy. RP is genetically heterogeneous with autosomal dominant, autosomal recessive and X-linked forms. Autosomal dominant retinitis pigmentosa (adRP) accounts for about 20-25% of all RP cases. At least ten adRP loci have so far been mapped. However, mutations causing adRP have been identified only in four retina-specific genes: RHO (encoding rhodopsin) in approximately 20% of adRP families, peripherin/RDS (3-5% of adRP) and recently RP1 (Pierce et al., 1999, Sulivan et al., 1999) and NRL gene. Only one mutation in the NRL gene causing adRP has so far been reported (Bessant et al., 1999). Here we report a novel mutation Pro51Leu in an adRP Spanish family supporting that mutation in NRL is the cause of adRP. A second missense mutation Gly122Glu has been observed in a simplex RP patient that may represent a sporadic case of retinitis pigmentosa. Hum Mutat 17:520, 2001.  相似文献   

6.
目的通过对一个常染色体显性视网膜色素变性(autosomal dominant retinitis pigmentosa,adRP)家系致病基因的定位和基因突变分析,以确定该家系的致病基因及其突变形式。方法对15个已知的常染色体显性视网膜色素变性致病基因所在染色体位点进行连锁分析,以确定该家系与疾病连锁的染色体区域,对该区域附近候选基因进行直接序列分析。结果连锁分析提示在D17S701和D17S1604为正的连锁值(logofodds,LOD),分别为Zmax=2.107和Zmax=1.806。其余14个adRP染色体位点的微卫星标记两点LOD值均为负数。单倍型分析进一步将该家系致病基因定位于微卫星标记D17S916和D17S794之间的RP17位点,该位点adRP候选基因碳酸酐酶Ⅳ(carbonic anhydrase4,CA4)直接序列分析在其编码区未发现基因突变。结论将一个中国人常染色体显性视网膜色素变性家系的致病基因定位于RP17位点,但未发现该位点内的CA4基因突变,该家系是否存在CA4基因复杂突变或RP17位点是否存在新的视网膜色素变性致病基因有待于进一步研究。  相似文献   

7.
Retinitis Pigmentosa (RP) is the most prevalent degenerativeretinal disease of mendelian origin, currently affecting approximately1.5 million people worldwide. To date it has been establishedthat a minimum of five different genes maybe involved in thepathogenesis of autosomal dominant forms of RP (adRP). The genesencoding two retinal specific proteins, rhodopsin and peripherin/RDS,have been implicated in causing adRP due to the observationof many different mutations in these genes in patients sufferingfrom RP. The three remaining adRP genes have been mapped tospecific regions of human chromosomes but as yet are uncharacterised.We have investigated if there is evidence for the presence ofanother locus in the genome which when mutated causes adRP.We have utilised polymorphic genetic markers which have previouslybeen mapped to each of the regions known to harbour adRP genes,to test for the exclusion or linkage of the disease gene segregatingin a pedigree of Irish origin and find no evidence for linkage.Hence we provide definitive evidence for the involvement ofyet another locus. The implications of high levels of geneticheterogeneity inherent in adRP are discussed in relation todiagnosis, prognosis and future therapies.  相似文献   

8.
9.
10.
The RP9 form of autosomal dominant retinitis pigmentosa (adRP) maps to a locus on human chromosome 7p14. We now report two different disease associated mutations in a previously unidentified human gene, the mouse orthologue of which has been characterised by its interaction with the Pim-1 oncogene. In the original linked family we identified the missense mutation H137L. A second missense mutation, D170G, was found in a single RP patient. The putative RP9 gene appears to be expressed in a wide range of tissues, but its function is unknown and a pathogenic mechanism remains to be determined.  相似文献   

11.
We report the identification of a novel 12 bp deletion of the pre-mRNA splicing gene PRPF31 in a large Chinese family with autosomal dominant retinitis pigmentosa (adRP). This mutation results in the deletion of four amino acids (DeltaH(111)K(112)F(113)I(114)) including H(111), an amino acid residue that is highly conserved throughout evolution. The 12 bp deletion co-segregates with the disease phenotype in 19 RP patients in the family, but is not present in unaffected relatives or 100 normal individuals. Our data indicate that the novel 12 bp deletion in PRPF31 causes retinitis pigementosa in this Chinese adRP family. In contrast to the incomplete penetrance observed in most adRP families linked to chromosome band 19q13.4 (RP11), the 12 bp PRPF31 deletion identified in this study appears to show high penetrance. These data expand the spectrum of PRPF31 mutations causing adRP, and confirm the role of PRPF31 in the pathogenesis of RP.  相似文献   

12.
Autosomal recessive retinitis pigmentosa (arRP) is the commonest form of RP worldwide. To date 22 loci have been implicated in the pathogenesis of this disease; however none of these loci independently account for a significant proportion of recessive RP. Linkage studies of arRP in consanguineous families have been mainly based on homozygosity mapping, but this strategy cannot be applied in the case of non-consanguineous families. Therefore, we implemented a systematic approach for identifying the disease locus in three non-consanguineous Chinese families with arRP. Initially, linkage analysis using SNPs/microsatellite markers or mutation screening of known arRP genes excluded all loci/genes except RP25 on chromosome 6. Subsequently a whole genome scan for the three families using the 10K GeneChip Mapping Array was performed, in order to identify the possible disease locus. To the best of our knowledge this is the first report on the utilisation of the 10K GeneChip to study linkage in non-consanguineous Chinese arRP. This analysis indicates that the studied families are probably linked to the RP25 locus, a well defined arRP locus in other populations. The identification of another ethnic group linked to RP25 is highly suggestive that this represents a major locus for arRP.  相似文献   

13.
The aim of this study was to identify and characterize the underlying molecular mechanisms in autosomal-dominant retinitis pigmentosa (adRP) with incomplete penetrance in two Swedish families. An extended genealogical study and haplotype analysis indicated a common origin. Mutation identification was carried out by multiplex ligation-dependent probe amplification (MLPA) and sequencing. Clinical examinations of adRP families including electroretinography revealed obligate gene carriers without abnormalities, which indicated incomplete penetrance. Linkage analysis resulted in mapping of the disease locus to 19q13.42 (RP11). Sequence analyses did not reveal any mutations segregating with the disease in eight genes including PRPF31. Subsequent MLPA detected a large genomic deletion of 11 exons in the PRPF31 gene and, additionally, three genes upstream of the PRPF31. Breakpoints occurred in intron 11 of PRPF31 and in LOC441864, ‘similar to osteoclast-associated receptor isoform 5.'' An almost 59 kb deletion segregated with the disease in all affected individuals and was present in several asymptomatic family members but not in 20 simplex RP cases or 94 healthy controls tested by allele-specific PCR. A large genomic deletion resulting in almost entire loss of PRPF31 and three additional genes identified as the cause of adRP in two Swedish families provide an additional evidence that mechanism of the disease evolvement is haploinsufficiency. Identification of the deletion breakpoints allowed development of a simple tool for molecular testing of this genetic subtype of adRP.  相似文献   

14.
Cataracts are the commonest cause of blindness worldwide. Inherited cataract is a clinically and genetically heterogeneous disease that most often shows autosomal dominant inheritance. In this study, we report the identification of a novel locus for cerulean cataract type 5 (CCA5), also known as blue-dot cataract on chromosome 12q24. To date, four loci for autosomal dominant congenital cerulean cataract have been mapped on chromosomes, 17q24, 22q11.2–12.2, 2q33–35 and 16q23.1. To map this locus we performed genetic linkage analysis using microsatellite markers in a five-generation English family. After the exclusion of all known loci and several candidate genes we obtained significantly positive LOD score (Z) for marker D12S1611 (Zmax=3.60; at θ=0). Haplotype data indicated that CCA5 locus lies within a region of 14.3 Mb interval between the markers D12S1718 and D12S1723. Our data are strongly suggestive of a new locus for CCA5 on chromosome 12.  相似文献   

15.
16.
17.
Background: In recent years, non-syndromic idiopathic cardiomyopathies have increasingly been characterised as autosomal dominant conditions caused by single gene mutations. Loci have been identified for hypertrophic and dilated cardiomyopathy, and in some cases the same loci are associated with restrictive cardiomyopathy (RCM). In a kindred with RCM that we previously reported, we ruled out the known cardiomyopathy loci and other candidate genes by linkage analysis and mutation screening. Methods and Results: Here we report a genome-wide analysis in this family that has resulted in linkage to a region on chromosome 10. Conclusions: There are no genes in the interval that are known to cause idiopathic cardiomyopathy, and thus this linkage represents localisation of a new RCM locus.  相似文献   

18.
目的 用连锁分析法对1个中国人显性视网膜色素变性家系进行已知位点的筛查,寻找其致病基因.方法 随机选取已知致病基因上下约5cM(JB)范围内的27对微卫星标记,确立单倍型,用两点法计箅最大优势对数(Lod score)值.结果 所选微卫星标记与该家系表型间最大Lod值小于1.结论 基本排除由已知常染色体显性遗传视网膜色素变性的候选基因导致该家系的病变.  相似文献   

19.
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder with genetic heterogeneity. Up to three loci are involved in this disease, PKD1 on chromosome 16p13.3, PKD2 on 4q21, and a third locus of unknown location. Here we report the existence of locus heterogeneity for this disease in the Argentinian population by performing linkage analysis on 12 families of Caucasian origin. Eleven families showed linkage to PKD 1 and one family showed linkage to PKD2. Two recombinants in the latter family placed the locus PKD2 proximal to D4S1563, in agreement with data recently published on the cloning of this gene. Analysis of clinical data suggests a milder ADPKD phenotype for the PKD2 family.  相似文献   

20.
The hypothesis that one or more genes containing expanded trinucleotide repeats contribute to the pathogenesis of bipolar disorder has received support from three independent studies demonstrating that bipolar patients tend to have larger CAG/CTG repeat expansion detection products than controls. In an attempt to identify the specific expanded CAG/CTG locus or loci which are associated with bipolar disorder, we determined repeat size at CAG/CTG loci mapping to candidate regions for bipolar disorder. Recent linkage studies suggest the existence of a bipolar susceptibility gene on chromosome 12q23-q24.1 in the region of the Darier's disease (DAR) gene. In this study we report our findings from 11 loci which map to chromosome 12, including CAG repeat polymorphisms within the genes SCA2 and ASH1. We conclude that all of these loci are excluded as candidates for CAG/CTG repeat expansion in bipolar disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号