首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.  相似文献   

2.
A new type of accelerator capable of producing a large flux of medium energy ions is discussed. The accelerator contains a charge neutral plasma in a magnetic field. Electron currents parallel to B? heat the plasma electrons to an average energy kTe by the Joule process. The electrons try to escape from the plasma into an adjacent vacuum region along the magnetic field lines. In doing so they create a charge separation electric field which collectively accelerates the ions to energies ?10 kTe . The large resistivity necessary to obtain both the rapid heating and impedance matching to high power sources results from electron streaming instabilities in the plasma. Feasibility is investigated using a one dimensional, time dependent fluid model. In this model a realistic circuit is coupled to the plasma electrons. The resultant plasma heating and expansion are numerically followed in time and space. These calculations seem to imply that present day technology utilizing high voltage Blumlein transmission lines (Z ? 1?) seem capable of creating a 10 MeV proton stream with energy >10 kJ, and equivalent current density >10 kA/cm2  相似文献   

3.
ITER will use a novel electrostatic method to remove the unwanted residual charged component from the neutral beam injectors in place of the usual magnet separation system. This technique has not been tested experimentally and is subject to the additional complication of plasma formation perturbing the electric field. Previous calculations have shown that whilst this is not significant for the 1 MeV heating beam systems, the lower energy diagnostic beam system will be susceptible. An analytical model of the electrostatic dump has been developed that includes the perturbation of the vacuum electrostatic field by both plasma and the separating positive and negatively charged residual beams. An approximate solution of Poisson’s equation is formulated that allows analysis of the space charge field when plasma density is insufficient to ensure zero electric field at the anode. The resulting modified electric field is then incorporated into a particle trajectory code to determine the deposition of the residual ions on the ERID panels. It is shown that the effect of plasma formation is to introduce an asymmetry into the deflecting field and the effect of the separating charges is to weaken the deflection of the residual beams. As a consequence the reference design for the ITER diagnostic beam will not collect all of the residual ions and it is recommended that the deflection voltage be increased by at least 50%.  相似文献   

4.
Atmospheric pressure plasma jets can generate a remote plasma plume, which usually presents a conical or cylindrical morphology. Despite a few morphologies being observed, efforts should be made to obtain more plume structures because streamer dynamics may be revealed from them. For this purpose, an argon plasma plume excited by a trapezoidal voltage is investigated, which presents two kinds of swells (a hollow swell and a diffuse swell) with increasing voltage amplitude (Vp). The results indicate that there are two positive discharges (Dp1 and Dp2) and one negative discharge (Dn) per voltage cycle for both of the swells. With increasing Vp, the inception voltage and discharge intensity increase for every positive discharge, while they decrease for the negative discharge. Fast photography reveals that the positive streamer (Dp2) leaves different tracks in the two swells, which are curved in the hollow swell and randomly branched in the diffuse swell. The different tracks of Dp2 are explained with the consideration of applied field strength and residual positive ions of Dp1. The existence of residual positive ions is finally verified from optical emission spectra.  相似文献   

5.
The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.  相似文献   

6.
Atmospheric pressure pulse-modulated radio-frequency (rf) plasmas have drawn growing attention due to their potential in applications. By selecting appropriate modulation parameters, the diffused and large-volume plasma can be generated in the pulse-modulated rf plasma with plenty of reactive oxygen species, which is essential for the biomedical application of helium–oxygen plasmas. In this paper, by means of a fluid model, the formation of the peak current in the first period (PCFP) in a pulse-modulated rf helium–oxygen discharge driven by a sinusoidal voltage is discussed, the existence of a reverse field near the anode caused by the negative and positive charges contributes greatly to the mechanism of PCFP. In the simulation, as oxygen admixture increases, the negative ions of O− and ${{\rm{O}}}_{2}^{-}$ become dominative anions in the sheath region, which can't be driven to the anode very quickly to build a reverse field, thus the PCFP eventually disappears. This study can effectively enhance the understanding of different transportation behavior of heavy negative ions and electrons, and further optimize pulse-modulated rf discharges with helium–oxygen mixtures in various applications.  相似文献   

7.
1. IntroductionThe plasma sheath is an important and complexregion for nearly all plasma applications in materials processing. The theoretical and experimental research on the features of sheath is important for making the processing mechanism clear and for selectingthe best processing conditions.The main process Of plasma nitriding has been noal.widely accepted as being dominated b3' the excitednitrogen molecules, ions= and nitrogen atoms [l-41.As to their formation, Aloll [5] thought that i…  相似文献   

8.
Tritium fuel for fusion reactors is produced by reacting lithium-6 (6Li) with neutrons in tritium breeders. This study demonstrates a method for Li recovery from seawater, wherein Li does not permeate from the anode side to the cathode side through an ionic liquid N,N,N-trimethyl-N-propylammonium–bis(trifluoromethanesulfonyl) imide. Almost all Li ions remain on the anode side (seawater), whereas the other ions in the seawater permeate to the cathode side through the ionic liquid with an applied electric voltage of 2–3 V.  相似文献   

9.
The generation of a very strong peak current in the first period(PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate(VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function(EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.  相似文献   

10.
There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.  相似文献   

11.
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.  相似文献   

12.
As the main source of the vacuum arc plasma, cathode spots (CSs) play an important role on the behaviors of the vacuum arc. Their characteristics are affected by many factors, especially by the magnetic field. In this paper, the characteristics of the plasma jet from a single CS in vacuum arc under external axial magnetic field (AMF) are studied. A multi-species magneto-hydro-dynamic (MHD) model is established to describe the vacuum arc. The anode temperature is calculated by the anode activity model based on the energy flux obtained from the MHD model. The simulation results indicate that the external AMF has a significant effect on the characteristic of the plasma jet. When the external AMF is high enough, a bright spot appears on the anode surface. This is because with a higher AMF, the contraction of the diffused arc becomes more obvious, leading to a higher energy flux to the anode and thus a higher anode temperature. Then more secondary plasma can be generated near the anode, and the brightness of the ‘anode spot’ increases. During this process, the arc appearance gradually changes from a cone to a dumbbell shape. In this condition, the arc is in the diffuse mode. The appearance of the plasma jet calculated in the model is consistent with the experimental results.  相似文献   

13.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

14.
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%–0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field,electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-toargon ratio is relatively larger(R?=?0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.  相似文献   

15.
The effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron discharge was investigated. The ion velocity distribution function(IVDF), the maximum ion energy and ion flux density were measured at the substrate by a retarding field energy analyzer. The sputtering behavior was investigated by the electric characteristics of target and bias discharges using voltage–current probe technique. It was found that the substrate bias led to the decrease of sputtering power, voltage and current with the amplitude 7.5%. The substrate bias also led to the broadening of IVDFs and the increase of ion flux density, made the energy divergent of ions impacting the substrate. This effect was further enhanced by increasing bias power and reducing discharge pressure.  相似文献   

16.
磁驱动旋转电弧运动图像及弧电压脉动的实验研究   总被引:1,自引:0,他引:1  
杜百合  黎林村  马强  陈佺  赵宇含  夏维东 《核技术》2005,28(10):745-750
磁驱动旋转电弧产生扩散电弧等离子体过程中有许多有趣的物理现象。本文利用高速摄影技术研究了大气压条件下、非均匀磁场中、大尺度磁驱动旋转氩电弧的电弧结构;在一定的弧电流和外磁场条件下,电弧的平面形状表现为不断发展和增长的螺旋结构,电弧螺旋结构的破裂往往产生于阴极附近的等离子体射流。采用图像分析的方法计算了外部磁场作用下阳极斑点沿弧室内壁的移动频率,分析了磁驱动旋转电弧运动过程中的弧电压脉动现象。结合电弧图像分析和电弧电压脉动及其FFT分析得出:电弧电压的大幅波动与多层电弧螺旋结构破裂和重建相关,而电弧电压的小幅波动则是弧根小幅跳动引起电弧拉长和收缩的结果。  相似文献   

17.
Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH) method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1 at the rising edge of the voltage...  相似文献   

18.
A proposal is presented in this work for a new type of ion source that employs a hyperbolic potential field for the dual purpose of trapping the plasma ions, and permitting the electrons to impact the trapped ions successively, which by turn render the ions highly stripped. The pvwposed souroe consists of an axially symmetric hyperbolic Penning assembly energized with fixed and cosinusoidal voltage and is immersed in a homogeneous axial magnetic field. The anode and both of the two cathodes follow hyperboloid surfaces of one and two sheets respectively. Extraction of the stripped ions can be accomplished either radially or axially through an extracting system, which is optimized to satisfy Pierce conditions of rectilinear flow. Filtering the extracted ions is done by a quadrupole mass analyzer. Under the influence of the imposed hyperbolic potential field, electrons are allowed to ascillate with bound or unbound trajectories depending on the operating conditions. From the solutions of the equations of motion governing such oscillating electrons, it is possible to optimize the overall performance of the proposed ion source.  相似文献   

19.
The electron cyclotron resonance heating(ECRH) system with a 60 GHz/200 k W/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply(APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 k V negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 k V with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a100 k V/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.  相似文献   

20.
Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion. Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range. In this paper, a heater is used to compensate for the temperature drop of the emitter at low current. The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant. This is also beneficial for long-life operation. However, when the discharge current is high(1 A), heating can cause discharge oscillation, discharge voltage and ion energy to increase. Further, combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate, electron emission in the orifice and outside the orifice increases and the plasma density in the orifice decreases. This leads to a change in the cathode discharge mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号