首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单晶NCM523/人造石墨电池可以在高压4.4 V和高温45℃下具有出色的长期寿命。本研究的重点是开发用于单晶NCM523/人造石墨电池的新电解质,这种电池寿命长并支持更高的充电速率。考察了电解液中FEC(氟代碳酸乙烯酯)、PST(1,3丙烯磺酸内酯)、MMDS(甲烷二磺酸亚甲酯)、DTD(硫酸乙烯酯)组合添加剂含量对锂离子电池初始容量、阻抗和化成时候的产气量,70℃储存7天电池的容量恢复和容量保持,1 C、2 C、3 C不同倍率下的放电性能,低温下放电性能和高温下循环寿命的影响。电解液中PST、MMDS添加剂含量对电池初始容量及内阻影响比较大。FEC对于化成过程中产气影响比较大,但可以提高电池的循环性能,DTD综合性能比较好。含有1%FEC+1%DTD添加剂(百分数均代表质量分数)的电解质产生具有长寿命的单晶NCM523/石墨电池,常温下倍率性能较好。  相似文献   

2.
吴弘  万华  王治安  罗磊 《电池》2022,52(2):190-193
碳酸亚乙烯酯(VC)常用作锂离子电池电解液添加剂,可在石墨负极形成固体电解质相界面(SEI)膜,但可能影响碳酸盐电解质的高电压性能。研究VC在LiNi0.5Mn1.5O4(LNMO)高电压正极中的电化学性能及副反应,结果表明:VC添加剂在一定程度上降低了碳酸酯体系电解液的氧化分解电位,从而导致难以在高电压电池中应用。分析不同充电过程中的表观容量,证实VC在正极材料的平台电位4.75 V下就会发生一定的分解;而在设定的恒压(4.95 V)充电段,会发生一个缓慢而持久的氧化分解过程,且存在较大的反应电流,使电池体系无法停止充电,造成电解液更持久的氧化。全电池循环性能测试结果表明:含VC的碳酸酯体系电解液的循环寿命较短,且在充电过程会有气体产生,导致电池鼓胀。  相似文献   

3.
本文用硫酸亚乙酯(DTD)取代常用的亚硫酸丙烯酯(PS)电解液添加剂,研究了不同DTD添加量对电解液电导率和锂离子电池性能的影响。结果表明,DTD添加量从0%上升至2%,电解液离子电导率呈现轻微下降的趋势,但是仍略大于添加PS的电解液。产气电芯的比例随着DTD含量的上升减少,DTD含量1%时产气电芯数约占电芯总数的31.7%,DTD含量上升至2%时未发现产气电芯,电芯厚度膨胀比与原电解液相同。此外,DTD可改善电芯的低温性能,DTD含量为2%时,电池在-20℃温度条件下的放电容量约为3.1%,而倍率及循环性能均与使用PS电解液的电池保持在同一水平。  相似文献   

4.
研究了硫酸乙烯酯(DTD)作为电解液添加剂对LiFePO_4/石墨电池高低温性能的影响。研究结果表明:一方面,DTD作为电解液添加剂参与了负极表面固体电解液相界面(SEI)膜的形成,降低了电池阻抗,改善电池的低温性能;另一方面,DTD形成的SEI膜具有良好的热稳定性,能显著提升LiFePO_4/石墨电池的高温循环性能和高温储存性能。  相似文献   

5.
以比容量较高的氧化亚硅-石墨材料作为负极,考察不同成膜添加剂对电池寿命的改善作用,并研究其成膜机理。实验结果表明:硫酸亚乙酯(DTD)可以优先在硅碳负极表面成膜,成膜电位为2.3 V,按一定比例搭配碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC)后,可将软包电池的循环寿命由700次提升至1 650次,获得较为理想的循环效果。  相似文献   

6.
曹哥尽  范伟贞 《电池》2023,(2):151-154
为提高石墨/磷酸铁锂(LiFePO4)锂离子电池的性能,研究2-苯基-1H-咪唑-1-磺酸酯(PhIS)作为电解液添加剂对石墨/LiFePO4软包装锂离子电池性能的影响。PhIS对LiFePO4锂离子电池的高温存储、低温放电、不同温度循环及阻抗等均有改善效果。PhIS添加量为1.0%(质量分数)的电池以0.2 C充电、0.5 C放电,在-10℃低温下于2.00~3.65 V循环200次的容量保持率为88.1%;60℃高温存储60 d,直流阻抗(DCR)增长率与未添加PhIS的对照组相比降低13.0%。  相似文献   

7.
姜文博  王宥宏  张俊婷  王倩倩 《电池》2022,52(2):144-147
以碳包覆Si合金粉末与人造石墨混合作为负极材料,制备CR2032型扣式电池,探讨氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)和氯代碳酸乙烯酯(CEC)等3种电解液添加剂对Si-C负极材料半电池性能的影响。适当的添加剂会先于碳酸酯类溶剂在负极材料表面形成薄而稳定的固体电解质相界面(SEI)膜,抑制碳酸酯类溶剂在充放电过程中的分解,使Si合金粉末的碳包覆壳保持稳定,同时解决Si-C负极材料的体积膨胀问题。当FEC、VC和CEC的添加量(体积分数)分别为3%、1%和3%时,电池的放电比容量、首次库仑效率和循环稳定性均得到改善。以100 mA/g电流在0.01~3.00 V充放电,Si-C负极材料的首次放电比容量达452.60 mAh/g,首次库仑效率达91.90%;第循环150次的容量保持率为86.50%。  相似文献   

8.
张丽娟  何劲作  辛娟  闫啸 《电池》2023,(6):605-609
少量添加剂的使用,可以改善锂离子电池的低温性能。采用不同锂盐[四氟硼酸锂(LiBF4)、二氟草酸硼酸锂(LiODFB)]及添加剂[氟代碳酸乙烯酯(FEC)],与溶剂EC+PC+EMC+EA(体积比1∶1∶1∶2)构建电解液体系,对LiCoO2/Li半电池进行测试,考察电池的首次充放电、倍率及循环性能,循环伏安(CV)曲线、电化学阻抗谱(EIS)、SEM和X射线光电子能谱(XPS)等。FEC最佳加入量为3%(质量分数)。在-20℃下,0.5 mol/L LiBF4+0.5 mol/L LiODFB/PC+EC+EMC+EA+3%FEC体系组装的电池,以0.1 C在2.7~4.2 V循环50次后,放电比容量为113.5 mAh/g,容量保持率为96.34%,高于未添加FEC电解液组装的电池。添加一定量FEC,有利于提高该电解液体系电池的放电比容量及低温下的循环稳定性。  相似文献   

9.
本论文合成了阻燃添加剂三(2,2,2-三氟乙基)磷酸酯(TFP),并将其与负极成膜添加剂复配组成高安全性电解液,以提高锂离子电池的安全性和电化学性能。在基准电解液(1.0 mol/L LiPF_6/EC+DEC(1∶1,v/v))中引入5%~20%TFP,电解液的阻燃性能显著提高;当TFP含量增加到20%时,电解液几乎不燃。但含20%TFP的高安全性电解液在石墨/LiCoO_2电池体系中的循环性能较差,半电池的测试结果表明:TFP与石墨负极兼容性较差。通过添加质量分数为1%的成膜添加剂(碳酸亚乙烯酯(VC)、1,3-丙烷磺酸内酯(PS)、氟代碳酸乙烯酯(FEC)),组成阻燃-成膜添加剂复配电解液体系,来改善20%TFP电解液的电化学性能,其中1%FEC的改善效果最显著:在石墨/LiCoO_2全电池体系和石墨/LiFePO_4全电池中都表现出优异的电化学性能,表明该阻燃-成膜添加剂复配的高安全性电解液具有重要的研究价值和广阔的应用前景。  相似文献   

10.
以方型铝壳13 Ah动力锂离子电池作为研究对象,考察了不同碳酸亚乙烯酯(VC)质量分数的电解液对电池性能的影响。通过分析电池化成、分容数据、高温存储性能,以及电池常温和高温55℃循环寿命的数据,发现当电解液中含有质量分数3%的VC时,电池具有较低内阻,较高容量保持率、较好的常温循环性能和高温循环性能。  相似文献   

11.
研究了基于烷基噻吩阳离子的离子液体烷基噻吩二(三氟甲基磺酰)亚胺(T_5TFSI)用于锂离子电池电解液的性能,分析了添加剂碳酸亚乙烯酯(VC)和γ-丁内酯(GBL)的影响.在0.4 mol/L的二(三氟甲基磺酰)亚胺锂(LiTFSI)/T_5TFSI中分别加入10%的VC或GBL时,0.1 C首次放电的比容量都可达到150 mAh/g.当w(vc)≤10%时,随着w(VC)的增加,电池的首次放电比容量增加,循环稳定性提高.当加入10%的GBL时,以0.1 C循环的库仑效率接近100%;以0.1 C循环100次的容量保持率为60%.  相似文献   

12.
选用比容量较高的氧化亚硅-石墨材料作为负极,考察不同电解液添加剂在其表面上的成膜作用及机理。实验结果表明:在石墨负极中加入质量分数5%的SiO,实际比容量可以达到395.73 mAh/g。LiPO_2F_2+FEC的添加剂组合可以将电池首次库仑效率提高至89.21%。其中LiPO_2F_2的成膜电位最小,可以在2.4 V即发生成膜反应。LiPO_2F_2+FEC的添加剂组合可以有效地改善硅碳负极的循环性能,在200次循环后容量保持率可以达到90.29%。  相似文献   

13.
常海涛 《电池》2023,(4):354-357
为提高锂离子电池-40℃场景下的充放电性能,采用电导率、黏度、SEM和电化学测试等,研究电解液以及负极调控对锂离子电池低温性能的影响。当采用LiBF4和VC作为添加剂的改性电解液,负极搭配硬碳材料,钴酸锂锂离子电池具备优良的超低温性能。在低温-40℃放电,容量可达常温时的94.9%。该电池具备较好的低温充电能力,在-40℃以0.2 C充电、0.5 C放电在2.5~4.2 V循环100次,容量为首次低温充电时的71.8%。  相似文献   

14.
新型正极材料高压镍锰酸锂的平台电位在4.75Vvs Li~+/Li,因此普遍认为电解液在高电位下的氧化分解是限制其应用的瓶颈。我们的研究工作发现,在半电池内、以纯碳酸酯为溶剂,镍锰酸锂表现出较好的循环稳定性,常规溶剂组合可以实现循环300周后容量保持80%以上,溶剂优化后,甚至达到92%以上的保持率。这表明高压镍锰酸锂电池正极一侧对添加剂的需求并不迫切。但是,我们发现部分常用石墨负极添加剂会对高压镍锰酸锂的循环性产生负面作用。本文中列举了碳酸亚乙烯酯(VC)和亚硫酸乙烯酯(ES)的氧化行为,发现它们分别在4.6V和4.05Vvs Li~+/Li会有明显分解反应。含有VC、ES添加剂的电解液使得镍锰酸锂电池的放电容量显著降低,在其电极表面有一层厚厚的沉积物,同时电池的阻抗显著增加。实验结果表明,在商品电池内广泛使用的负极添加剂,可能会优先在高压镍锰酸锂一侧发生正极氧化分解。因此,镍锰酸锂电池需要重新设计电解液体系。  相似文献   

15.
在某商用锂离子电池电解液(CE)中加入双草酸硼酸锂(Li BOB)和氟代碳酸乙烯酯(FEC)制备了一种电解液(WY)。对使用WY电解液的18 Ah磷酸铁锂/石墨动力电池进行高低温电性能测试,并与使用CE电解液的同规格LiFePO_4电池高低温数据进行了对比。结果表明:与商用电解液相比,使用WY电解液的电池在25℃不同倍率下放电容量均高于商用电解液电池。WY电池在-20℃低温下0.1 C和0.2 C放电容量增加了16.0%和15.8%。WY电池-20℃与室温下的放电容量高于CE电池。在-40℃低温下,WY电池性能优于CE电池。在60℃高温下,使用WY电解液的电池性能优于使用CE电解液的电池性能。  相似文献   

16.
对氟化碳电池电解液的配制及使用进行了研究。使用两种醚类溶剂DME、THF和两种砜类溶剂TMS、DMSO等,锂盐为LiBF_4、LiClO_4、Li N(SO_2CF_3)_2等,组成单溶剂电解液,进行电化学阻抗、线性扫描及电性能测试,其中LiTFSI-THF电解液所制备的电池以0.1 C放电,比容量为856.9 mAh/g,接近理论容量;LiClO_4-DMSO电解液以0.1 C放电,放电平台达到2.7 V。以VC、FEC作为添加剂使用,提高了电池的放电容量。  相似文献   

17.
赵本好  许鹏  谢佳 《电池工业》2013,18(1):51-54
在常规碳酸酯基电解液中加入20%(体积百分数)氟代碳酸乙烯酯(FEC),可将电解液电化学窗口提高至4.7V.LiNi0.5 Mn1.5 O4//Li半电池测试结果表明,FEC的加入不影响电池库伦效率和材料克容量发挥,其中含20%FEC电解液可以使锂离子电池在0.5C充放电条件下100次循环容量保持率为98.5%,远高于使用不含FEC常规电解液的锂离子电池容量保持率(81.6%).  相似文献   

18.
在研究硅/碳复合负极材料和人造石墨负极材料混合负极的比容量与电极膨胀率之间的变化关系的基础上,通过配方优化,成功制作了硅/碳复合负极材料与人造石墨负极材料混合负极的18650型锂离子电池。采用扫描电子显微镜法(SEM)、电化学交流阻抗频谱(EIS)等技术,分析了循环前后负极的变化,研究了氟代碳酸乙烯酯(FEC)添加剂对电池性能的影响。结果表明:FEC加入量较高时,可与硅负极材料形成更加稳定的SEI膜,抑制负极材料的粉化,电池180次循环后,容量保持率达到71.3%,循环性能得到显著提高。  相似文献   

19.
结合对电池极群组结构和电解液组成的研究,制备出了4种扣式锂离子蓄电池。在电池组装过程中,电池极群组采用叠片组装结构,提升了电池的放电容量并改善了电池的放电性能。使用加有1%(体积百分比)碳酸亚乙烯酯(VC)或1%(质量百分比)N,N-二甲基-二硫代甲酰胺丙磺酸钠(DPS)的电解液,可使电池封口化成时的厚度减少30%以上,有效地解决了电池厚度超标问题。加入VC同时也可提高电池的容量和循环寿命。此外,在电液中添加5%(质量百分比)的联苯或2%(体积百分比)的三乙胺后,可改善电池的过充性能。以所制备的扣式2016锂离子蓄电池为例,经过上述改进,电池的放电容量达到30mAh,0.5C充放电循环500次后容量为初始容量的80%。  相似文献   

20.
利用多巴胺自聚合原理,通过包覆一层氮掺杂的碳质材料(无定型碳)来降低磷酸铁锂(LiFePO4)材料的表面电阻,提高低温下Li+迁移速率。采用含氟有机溶剂氟代碳酸乙烯酯,以物质的量比为1∶1的双三氟甲磺酰亚胺锂(LiTFSI)和双(五氟乙基磺酰基)亚胺锂(LiBETI)为混合锂盐,制备1 mol/L混合锂盐电解液(MLiE),以解决电池在低温环境下性能下降的问题。与目前的商业LiFePO4/石墨电池相比,组装使用MLiE的LiFePO4锂离子电池在-20℃于3.65~2.50 V充放电,0.1 C、0.2 C、0.5 C和1.0 C放电容量分别增加了37.4%、44.6%、51.1%和65.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号