首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Sensitivities of species compositions of the broadleaf–conifer mixed forest in eastern Eurasian continent to climate change were evaluated with three forest gap models, namely KOPIDE, NEWCOP, and ForClim. Testing sites are located on Changbai Mountain, the middle of the distribution range for the mixed forest. Six climate change scenarios characterizing increase in temperature and increase/decrease in precipitation were used to test the sensitivities of species composition to climate change. Simulations suggest that the mixed forest in temperate Monsoon Asia will face changes in species composition should climate change be almost certain. At the minimum level, the order of dominant species is going to change due to species competition, resulting in the increase in the proportion of broadleaved tree species in the forest. If air temperature increases and precipitation decreases, Pinus koraiensis is going to disappear from the forest and the mixed forest will become hardwood forest. This experiment supports some earlier predictions under other climate change scenarios.  相似文献   

2.
In this study, we report on the validation of process-based forest growth and carbon and nitrogen model of TRIPLEX against observed data, and the use of the model to investigate the potential impacts and interaction of climate change and increasing atmospheric CO2 on forest net primary productivity (NPP) and carbon budgets in northeast of China. The model validation results show that the simulated tree total volume, NPP, total biomass and soil carbon are consistent with observed data across the Northeast of China, demonstrating that the improved TRIPLEX model is able to simulate forest growth and carbon dynamics of the boreal and temperate forest ecosystems at regional scale. The climate change would increase forest NPP and biomass carbon but decrease overall soil carbon under all three climate change scenarios. The combined effects of climate change and CO2 fertilization on the increase of NPP were estimated to be 10–12% for 2030s and 28–37% in 2090s. The simulated effects of CO2 fertilization significantly offset the soil carbon loss due to climate change alone. Overall, future climate change and increasing atmospheric CO2 would have a significant impact on the forest ecosystems of Northeastern China.  相似文献   

3.
Rainfed tropical agriculture provides important avenue to ascertain the consequences of climate change. This is because reliability of rainfall accounts for much of the variation in agriculture in the region. In addition, the region is already hot and vulnerable from further warming. This study shows from a climate change experiment using Ricardian method in Cameroon that a 7% decrease in precipitation would cause net revenues from crops to fall US$2.86 billion and a 14% decrease in precipitation would cause net revenue from crops to fall US$3.48 billion. Increases in precipitation would have the opposite effect on net revenues. For a 2.5 °C warming, net revenues would fall by US$0.79 billion, and a 5 °C warming would cause net revenues to fall US$1.94 billion. This highlights that agriculture is not only limited by seasonality and magnitude of moisture availability, but also it is significantly impacted by climate change.  相似文献   

4.
Most general circulation models (GCMs) project that climate will be warmer in the 21st century, especially in high latitudes. Climate warming will induce permafrost degradation, which would have great impacts on hydrology, ecosystems and soil biogeochemistry, and could destabilize the foundations of infrastructure. In this study, we simulated transient changes of permafrost distribution in Canada in the 21st century using a process-based permafrost model driven by six GCM-generated climate scenarios. The results show that the area underlain by permafrost in Canada would be reduced by 16.0–19.7% from the 1990s to the 2090s. This estimate was smaller than equilibrium projections because the ground thermal regime was in disequilibrium at the end of the 21st century and permafrost degradation would continue. The simulation shows significant permafrost thaw from the top: On average for the area where permafrost exists in all the years during 1990–2100, active-layer thickness increased by 0.3–0.7 m (or 41–104%), the depth to permafrost table increased by 1.9–5.0 m, and the area with taliks increased exponentially. Permafrost was also thawed from the bottom in southern regions.  相似文献   

5.
The effect of climate change on carbon in Canadian peatlands   总被引:3,自引:0,他引:3  
Peatlands, which are dominant features of the Canadian landscape, cover approximately 1.136 million km2, or 12% of the land area. Most of the peatlands (97%) occur in the Boreal Wetland Region (64%) and Subarctic Wetland Region (33%). Because of the large area they cover and their high organic carbon content, these peatlands contain approximately 147 Gt soil carbon, which is about 56% of the organic carbon stored in all Canadian soils.A model for estimating peatland sensitivity to climate warming was used to determine both the sensitivity ratings of various peatland areas and the associated organic carbon masses. Calculations show that approximately 60% of the total area of Canadian peatlands and 51% of the organic carbon mass in all Canadian peatlands is expected to be severely to extremely severely affected by climate change.The increase in average annual air temperature of 3–5 °C over land and 5–7 °C over the oceans predicted for northern Canada by the end of this century would result in the degradation of frozen peatlands in the Subarctic and northern Boreal wetland regions and severe drying in the southern Boreal Wetland Region. In addition, flooding of coastal peatlands is expected because of the predicted rise in sea levels. As a result of these changes, a large part of the carbon in the peatlands expected to be severely and extremely severely affected by climate change could be released into the atmosphere as carbon dioxide (CO2) and methane (CH4), which will further increase climate warming.  相似文献   

6.
Abrupt climate change revisited   总被引:1,自引:0,他引:1  
Taken together, evidence from east Greenland's mountain moraines and results from atmospheric models appear to provide the answer to a question which has long dogged abrupt climate change research: namely, how were impacts of the Younger Dryas (YD), Dansgaard–Oeschger (D–O) and Heinrich (H) events transmitted so quickly and efficiently throughout the northern hemisphere and tropics? The answer appears to lie in extensive winter sea ice formation which created Siberian-like conditions in the regions surrounding the northern Atlantic. Not only would this account for the ultra cold conditions in the north, but, as suggested by models, it would have pushed the tropical rain belt southward and weakened the monsoons. The requisite abrupt changes in the extent of sea ice cover are of course best explained by the turning on and turning off of the Atlantic's conveyor circulation.  相似文献   

7.
Late Quaternary terrestrial and marine pollen records from the Canterbury Plains and Banks Peninsula suggest that climates during the peak of Marine Isotope Stage 7 (MIS 7) were similar to those prevailing during stage 5e and the Holocene. Podocarp forest (notably Prumnopitys taxifolia—matai) characterises each interglaciation. In contrast, marine records from DSDP 594 cores, off the east coast of Canterbury, indicate that stage 7 was dominated by montane forest (Libocedrus sp. and Phyllocladus). This suggests temperatures as much as 3 °C colder than indicated by the Banks Peninsula assemblage. Age control from both sites appears to be robust. Some of the differences may be related to the taphonomy of the pollen at both sites. DSDP 594 may reflect a more southerly catchment of fluvially and aeolian-derived pollen than does the Banks Peninsula site.Banks Peninsula was alternately separated from, and joined to, the mainland as Quaternary sea levels fell and rose. Assuming modern ocean current patterns, during interglacials the south–north Southland Current would have swept through the seaway separating the island from the mainland, diverting the flow of rivers embouching on the Canterbury coast, and moving sediments and fluvially transported pollen northwards. Little of this material would have reached DSDP 594, nor, if wind patterns were similar to those of today, would wind-borne pollen from Banks Peninsula have reached the site. It is probable that vegetation on the Peninsula was consistently distinct from that recorded at DSDP 594, which has a more southerly derivation.In contrast to the high mountain areas of the South Island, the low levels of grass pollen in the available record suggest that the Peninsula retained a woody vegetation over much of its area during glacial periods. This was favoured by the physiography of the area, with a variety of micro-climates, and by the extensive areas available for colonisation at times of low sea level. The podocarp forest of MIS 7 was replaced by an open shrubby vegetation in which Leptospermum and Kunzea (Leptospermum-type pollen) was locally dominant, and in which Plagianthus, Phyllocladus, Coprosma and Myrsine were prominent. Charcoal is associated with this change. Most of the recorded taxa, with the exception of Phyllocladus, are present on the Peninsula today. A gap in the pollen record coincides with the Last Interglacial and Last Glaciation, but a return of forest vegetation is documented in the later Holocene.The reconstructions do not exclude the possibility of a cooler stage 7. They do highlight the importance of excluding local/regional non-climatic effects before interpreting climate change from data sets, and reinforce the necessity of testing marine records against compatible terrestrial ones.  相似文献   

8.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones.  相似文献   

9.
The global climate–vegetation model HadSM3_TRIFFID has been used to estimate the equilibrium states of climate and vegetation with pre-industrial and last glacial boundary conditions. The present study focuses on the evaluation of the terrestrial biosphere component (TRIFFID) and its response to changes in climate and CO2 concentration. We also show how, by means of a diagnosis of the distribution of plant functional types according to climate parameters (soil temperature, winter temperature, growing-degree days, precipitation), it is possible to get better insights into the strengths and weaknesses of the biosphere model by reference to field knowledge of ecosystems.The model exhibits profound changes between the vegetation distribution at the Last Glacial Maximum and today that are generally consistent with palaeoclimate data, such as the disappearance of the Siberian boreal forest (taiga), an increase in shrub cover in Europe and an increase of the subtropical desert area. The effective equatorial and sub-tropical tree area is reduced by 18%. There is also an increase in cover of wooded species in North-Western Africa and in Mexico. The analysis of bioclimatic relationships turns out to be an efficient method to infer the contributions of different climatic factors to vegetation changes, both at high latitudes, where the position of the boreal treeline appears in this model to be more directly constrained by the water stress than by summer temperature, and in semi-humid areas where the contributions of temperature and precipitation changes may partly compensate each other. Our study also confirms the major contribution of the decrease in CO2 to environmental changes and carbon storage through its selective impact on gross primary productivity of C3 and C4 plants and a reduction by 25% of water-use efficiency. Specifically, the reduction in CO2 concentration increases the amount of precipitation necessary to sustain at least 20% of grass fraction by 50 mm/year; the corresponding threshold for trees is increased by about 150 mm/year. As a consequence, a reduction in CO2 concentration considerably widens the climatic range where grasses and shrubs dominate.  相似文献   

10.
Lake Poukawa is a small, shallow lake lying in the middle of extensive peatland in the Poukawa depression, central Hawke's Bay. Holocene peats (10 m at deepest point) overlie more than 200 m of sand, silt, clastic debris and infrequent thin peats and lacustrine sediments deposited during the late Pleistocene. Pollen analyses are presented for: a peat possibly dating to a late stage of the last interglacial or a warm interstadial of the last glacial; cool climate last glacial sediments; and a Holocene peat. The last interglacial or interstadial peat records a cool climate Nothofagus podocarp forest. During the last glacial, sparse shrubland and grassland grew within the depression under much drier and colder conditions than now. There is no pollen record for the Late Glacial and early Holocene period as conditions remained too dry for peat formation. Avian fossils indicate scrub and grassland persisted through until at least 10,600 years BP, and scrub or open forest may have prevailed until c. 6500 years BP. Closed podocarp broadleaved forest (Prumnopitys taxifolia dominant) occupied the depression from at least 6500 years BP until its destruction by Polynesian settlers after 800 years BP. Water levels rose from 6500 to 4500 years BP, culminating in the establishment of the present fluctuating lake-peatland system. Dry conditions in the Late Glacial and early Holocene may reflect a predominant northwesterly air flow, and a change to more easterly and southerly air flow in the mid- to late Holocene resulted in increased rainfall.  相似文献   

11.
Scenarios of land cover in China   总被引:3,自引:0,他引:3  
A method for surface modeling of land cover change (SMLC) is developed on the basis of establishing transition probability matrixes between land cover types and HLZ types. SMLC is used to simulate land cover scenarios of China for the years 2039, 2069 and 2099, for which HLZ scenarios are first simulated in terms of HadCM3 climatic scenarios that are downscaled in zonal model of spatial climate change in China. This paper also analyzes spatial distribution of land cover types, area change and mean center shift of each land cover type, ecotope diversity, and patch connectivity under the land cover scenarios. The results show that cultivated land would decrease and woodland would expand greatly with climatic change, which coincides with consequences expected by implementation of Grain-for-Green policy. Nival area would shrink, and desertification area would expand at a comparatively slow rate in future 100 years. Climate change would generally cause less ecotope diversity and more patch connectivity. Ecosystems in China would have a pattern of beneficial cycle after efficient ecological conservation and restoration. However, if human activities would exceed regulation capacity of ecosystems themselves, the ecosystems in China might deteriorate more seriously.  相似文献   

12.
Forest ecosystems play an important role in global carbon cycle regulation. Clarifying the dynamics and mechanism of carbon sink is of both scientific and political importance. In this paper, we have investigated the spatiotemporal change of forest net primary production (NPP) in China for recent two decades based on the geographically weighted regression (GWR) with a cumulative remote sensing index, the maximum normalized difference vegetation index (NDVImax). GWR is a recently developed regression method with special emphasis on spatial non-stationarity. Outputs of forest NPP at three different stages was generated by the GWR model with NDVImax for the 1980s, early and late 1990s which were consequently analyzed. Our results indicated a wave-like pattern of change in forest NPP in the three stages with a trough-like depression for the early 1990s. The average forest NPP increased by about 0.72% from the 1980s to the late 1990s. A continuously increasing trend at a pace of 0.07% and 0.22% yr− 1 was observed in the tropical and subtropical zones from the 1980s to late 1990s respectively, while a continuously decreasing trend (− 0.05% yr− 1) was noted for the temperate zone. From forest type perspective, only the deciduous broadleaf forests exhibited a continuously decreasing trend of 0.18% yr− 1. The complex spatiotemporal patterns revealed by this study suggest the need for further research in this direction in order to build in-depth insights into the revealed complexities.  相似文献   

13.
14.
Tree ring chronologies provide long-term records of growth in natural environmental conditions and may be used to evaluate impacts of climatic change and CO2 increase on forest productivity. This study focuses on 21 Pinus halepensis forest stands in calcareous Provence (in the south-east of France). A chronology of net primary productivity (NPP) both for the 20th century and for each stand was estimated using tree ring data (width and density). The response of each stand to climate in terms of NPP was statistically modelled using response functions. Anomalies between estimated NPP and NPP reconstructed by response functions were calculated to evaluate the fertilising effect of CO2 increase on tree growth. The changes in anomalies during the 20th century were attributed to the effect of CO2 increase. A multiplying factor (β) linking CO2 concentration and stand productivity was then calculated, on the basis of the trend observed during the 20th century. In this study, the value of the β factor obtained under natural conditions (β=0.50) is consistent with those from controlled CO2 enrichment experiments. Both response functions and the β factor were used to predict NPP changes for a 2×CO2 scenario. The 2×CO2 climate was obtained using predictions from Météo France's ARPEGE atmospheric general circulation model (AGCM) downscaled to Marseilles meteorological station. NPP increased significantly for nine stands solely when the climatic effect was taken into account. The main factors responsible for this enhancement were increased winter and early spring temperatures. When the fertilising effect of the CO2 increase was added, NPP was significantly enhanced for 14 stands (i.e. NPP enhancement ranged from 8% to 55%). Although the effects of global change were slightly detectable during the 20th century, their acceleration is likely to lead to great changes in the future productivity of P. halepensis forests.  相似文献   

15.
The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.  相似文献   

16.
Death Valley, California is today the hottest hyperarid area in the western Hemisphere with temperatures of 57 °C (134 °F) recorded. During the late Quaternary, pluvial Lake Manly covered much of the Valley and contributed to a much more moderate climate. The abrupt draining of Lake Manly in the mid-Holocene and coincident dramatic shifts in temperature and aridity exerted substantial selection pressure on organisms living in this area. Our research investigates the adaptive response of Neotoma (woodrats) to temperature change over the late Quaternary along a steep elevational and environmental gradient. By combining fieldwork, examination of museum specimens, and collection of paleomiddens, our project reconstructs the divergent evolutionary histories of animals from the valley floor and nearby mountain gradients (− 84 to > 3400 m). We report on recent paleomidden work investigating a transition zone in the Grapevine Mountains (Amargosa Range) for two species of woodrats differing significantly in size and habitat preferences: N. lepida, the desert woodrat, and N. cinerea, the bushy-tailed woodrat. Here, at the limits of these species' thermal and ecological thresholds, we demonstrate dramatic fluctuations in the range boundaries over the Holocene as climate shifted. Moreover, we find fundamental differences in the adaptive response of these two species related to the elevation of the site and local microclimate. Results indicate that although N. cinerea are currently extirpated in this area, they were ubiquitous throughout the late Pleistocene and into the middle Holocene. They adapted to climate shifts over this period by phenotypic changes in body mass, as has been demonstrated for other areas within their range; during colder episodes they were larger, and during warmer intervals, animals were smaller. Their presence may have been tied into a much more widespread historical distribution of juniper (Juniperus sp.); we document a downward displacement of approximately 1000 m relative to juniper's modern extent in the Amargosa Range. These results suggest a cooler and more mesic habitat association persisting for longer and at lower elevations than previously reported.  相似文献   

17.
The observed rapid glacier wastage in the European Alps during the past 20 years already has strong impacts on the natural environment (rock fall, lake formation) as well as on human activities (tourism, hydro-power production, etc.) and poses several new challenges also for glacier monitoring. With a further increase of global mean temperature in the future, it is likely that Alpine glaciers and the high-mountain environment as an entire system will further develop into a state of imbalance. Hence, the assessment of future glacier geometries is a valuable prerequisite for various impact studies. In order to calculate and visualize in a consistent manner future glacier extent for a large number of individual glaciers (> 100) according to a given climate change scenario, we have developed an automated and simple but robust approach that is based on an empirical relationship between glacier size and the steady-state accumulation area ratio (AAR0) in the Alps. The model requires digital glacier outlines and a digital elevation model (DEM) only and calculates new glacier geometries from a given shift of the steady-state equilibrium line altitude (ELA0) by means of hypsographic modelling. We have calculated changes in number, area and volume for 3062 individual glacier units in Switzerland and applied six step changes in ELA0 (from + 100 to + 600 m) combined with four different values of the AAR0 (0.5, 0.6, 0.67, 0.75). For an AAR0 of 0.6 and an ELA0 rise of 200 m (400 m) we calculate a total area loss of − 54% (− 80%) and a corresponding volume loss of − 50% (− 78%) compared to the 1973 glacier extent. In combination with a geocoded satellite image, the future glacier outlines are also used for automated rendering of perspective visualisations. This is a very attractive tool for communicating research results to the general public. Our study is illustrated for a test site in the Upper Engadine (Switzerland), where landscape changes above timberline play an important role for the local economy. The model is seen as a first-step approach, where several parts can be (and should be) further developed.  相似文献   

18.
The northern treeline is generally limited by available warmth. However, in recent years, more and more studies have identified drought stress as an additional limiting factor for tree growth in northern boreal forests and at treelines. Three growth responses to warming have been identified: increase in growth, decrease in growth, and nonsignificant correlation of tree growth with climate. Here we investigate the effect of drought stress on radial growth of white spruce at northern treelines along a longitudinal gradient spanning the entire Brooks Range in Alaska. We systematically sampled 687 white spruce at seven treeline sites. Where possible, we sampled three site types at a given site: high-density forest, low-density forest, and floodplain forest. We investigated the relationship of site and site type to tree growth responses. In the western part of our study area, we found very high numbers of trees responding with increase in growth to recent warming; while in the eastern part, trees responding with decrease in growth to recent warming are predominant. Within a given site, more trees reacting positively to warming grow on site types characterized by low tree density. These patterns coincide with precipitation decreases from west to east and local water availability gradients, therefore pointing to drought stress as the controlling factor for the distribution of trees responding with increase or decrease in growth to recent warming. Compared to 20th century climate, we project a 25–50% basal area (BA) increase in the western region for the 21st century due to climate warming as projected by five general circulation models, 4–11% in the central region and decreases (+1 to −11%) in the eastern region. The overall net change in projected 21st century BA increase at each site seems to be controlled by the relative proportion of responder groups. If these are similar, differences in the magnitude of increase versus decrease in growth control BA projections for that site. This study highlights the importance of regional-scale investigations of biosphere–climate interactions, since our results indicate a substantial gain in aboveground biomass as a result of future warming only in the western regions; while in the eastern regions, climate warming will decrease overall wood production and therefore carbon uptake potential.  相似文献   

19.
Environmental change in the Sahel–Sudan zone of West Africa has been a major issue in development debates over the last decades. Using remote sensing based land cover change analysis, archival data, national and international statistical data, and household interviews, we analyze the drivers of environmental change in Eastern Saloum in Central East Senegal as well as the local perceptions of these changes and adaptation. Being part of the ground nut basin, Eastern Saloum has witnessed rapid environmental degradation caused by the conversion of forest and savanna areas to agricultural land during the last 20–30 years and by a combination of decline in precipitation, soil degradation, a diversity of policies with little concern for the environment, fluctuating markets and population pressure. Farmers perceive the environmental change mainly as land degradation and poor soil fertility, though recent extensification of agriculture counters this effect and has led to increased vegetation cover in marginal areas. They identified erratic climate, agricultural policies, insufficient food production and desire to increase income as the main drivers of change in the area. We conclude that while climate variability has influenced environmental change in the area, various types of State interventions in agriculture and global market fluctuations appear to have been the main underlying causes of environmental degradation.  相似文献   

20.
The role of tropical ecosystems in global carbon cycling is uncertain, at least partially due to an incomplete understanding of climatic forcings of carbon fluxes. To reduce this uncertainty, we simulated and analyzed 1982–1999 Amazonian, African, and Asian carbon fluxes using the Biome-BGC prognostic carbon cycle model driven by National Centers for Environmental Prediction reanalysis daily climate data. We first characterized the individual contribution of temperature, precipitation, radiation, and vapor pressure deficit to interannual variations in carbon fluxes and then calculated trends in gross primary productivity (GPP) and net primary productivity (NPP). In tropical ecosystems, variations in solar radiation and, to a lesser extent, temperature and precipitation, explained most interannual variation in GPP. On the other hand, temperature followed by solar radiation primarily determined variation in NPP. Tropical GPP gradually increased in response to increasing atmospheric CO2. Confirming earlier studies, changes in solar radiation played a dominant role in CO2 uptake over the Amazon relative to other tropical regions. Model results showed negligible impacts from variations and trends in precipitation or vapor pressure deficits on CO2 uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号