首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
Neural cell adhesion molecules (CAMs) of the immunoglobulin (Ig) superfamily mediate not only cell aggregation but also growth cone guidance and neurite outgrowth. In this study we demonstrate that two neural CAMs, L1-CAM and TAG-1, induce the homophilic aggregation of Drosophila S2 cells but are unable to interact with each other when expressed on different cells (trans-interaction). However, immunoprecipitations from cells co-expressing L1-CAM and TAG-1 showed a strong cis-interaction between the two molecules in the plane of the plasma membrane. TAG-1 is linked to the membrane by a glycosylphosphatidylinositol (GPI) anchor and therefore is unable to directly interact with cytoplasmic proteins. In contrast, L1-CAM-mediated homophilic cell adhesion induces the selective recruitment of the membrane skeleton protein ankyrin to areas of cell contact. Immunolabeling experiments in which S2 cells expressing TAG-1 were mixed with cells co-expressing L1-CAM and TAG-1 demonstrated that the homophilic interaction between TAG-1 molecules results in the cis-activation of L1-CAM to bind ankyrin. This TAG-1-dependent recruitment of the membrane skeleton provides an example of how GPI-anchored CAMs are able to transduce signals to the cytoplasm. Furthermore, such interactions might ultimately result in the recruitment and the activation of other signaling molecules at sites of cell contacts.  相似文献   

2.
The cell adhesion molecule L1 plays an important role in neural development, and mutations in human L1 have been implicated in X-linked hydrocephalus and related neurological diseases. We have previously demonstrated that recombinant proteins containing the second immunoglobulin-like domain (Ig2) of L1 contain both homophilic binding and neuritogenic activities. In this report, the involvement of L1 Ig2 in cell-cell adhesion and neuritogenesis was further evaluated in cell transfection studies. Transfectants expressing intact L1 were capable of undergoing L1-dependent self-aggregation and promoting neurite outgrowth from neural retinal cells. However, both activities were abolished in transfectants expressing L1delta2, a mutant L1 with Ig2 deleted. In competition experiments, the wild-type Ig2 fusion protein inhibited L1-dependent cell aggregation, whereas an Ig2 fusion protein containing the hydrocephalus mutation R184Q did not. Oligopeptides flanking Arg184 were therefore synthesized and assayed for their effects on L1-mediated cell-cell binding and neuritogenesis. The peptide L1-A, spanning the residues His178 and Gly191, inhibited both L1- and Ig2 fusion protein-mediated homophilic binding. When neural retinal cells were cultured on substrate-coated Ig2 fusion protein, peptide L1-A also abolished L1-dependent neurite outgrowth. Substitutions of several charged residues and hydrophobic residues with alanine in peptide analogues led to the loss of inhibitory effects, suggesting that multiple amino acids might be involved in L1-L1 binding. Taken together, these results identify an L1 homophilic binding site within the sequence HIKQDERVTMGQNG of Ig2 and demonstrate the requirement of L1 homophilic binding in the promotion of neurite outgrowth.  相似文献   

3.
F3 and TAG-1 are two closely related adhesion glycoproteins of the Ig superfamily that are both expressed by the axons of cerebellar granule cells. In an in vitro system in which cerebellar granule cells were cultured on monolayers of transfected Chinese hamster ovary (CHO) cells, we show that F3 and TAG-1 interact functionally. F3 transfectants have been shown to inhibit outgrowth and induce fasciculation of granule cell neurites. By contrast TAG-1 transfectants have no effect on these events. However, when TAG-1 is coexpressed with F3, the inhibitory effect of F3 is blocked. Two possible mechanisms may account for this functional interaction: (1) either TAG-1 and F3 compete for the same neuronal receptor, and in favor of this we observed that binding sites for microspheres conjugated with F3 and TAG-1 are colocalized on the granule cell growth cones, (2) or alternatively, F3 and TAG-1 associate in a multimolecular complex after their binding to independent receptors. Extensive co-clustering of F3 with TAG-1 can in fact be achieved by anti-TAG-1 antibody-mediated cross-linking in double-transfected CHO cells. Moreover, F3 coimmunoprecipitates with TAG-1 in Triton X-100-insoluble microdomains purified from newborn brain. These data strongly suggest that F3 and TAG-1 may associate under physiological conditions to modulate neurite outgrowth and fasciculation of the cerebellar granule cells.  相似文献   

4.
In the external granular layer of the cerebellum, the granule cell precursors express the transient axonal glycoprotein TAG-1, a molecule involved in adhesion and neurite outgrowth. Granule cells express TAG-1 transiently, just as they extend neurites before migrating over the radial glia. The present study aims to investigate whether the expression pattern of TAG-1 is altered when granule cells develop abnormally. We studied in vivo models in which Purkinje and/or granule cell defects occur during postnatal development. These include the cerebellar mutant mice staggerer and lurcher as well as rats irradiated during postnatal development. Neither alterations in Purkinje cell differentiation nor the related granule cell loss in the mouse mutants impairs the ability of the surviving granule cell precursors to express TAG-1. Also, early granule cell loss in the X-irradiated rats do not disturb the TAG-1 expression phase in the patches of surviving granule cell precursors. Ectopic granule cells found in the adult cerebellum of X-irradiated rats do not bear the molecule, although they are located in the most superficial part of the molecular layer, occupied by the immunopositive cells a few days earlier. Thus, TAG-1 marks a very precise stage of granule cell differentiation, and the inward migration process itself is not required for the cessation of the expression. We postulate that TAG-1 may be involved in local differentiation steps restricted to the deep external granular layer such as parallel migratory routes or synchrony of axonal growth.  相似文献   

5.
Neurite outgrowth is a central aspect of the ontogenetic formation of neural networks and is regulated by distinct groups of cell surface molecules. One protein involved in neurite elongation and fasciculation is the neural Ig superfamily member F11/contactin. We have shown previously that F11 promotes neurite extension of chick tectal neurons by interaction with the tectal receptor NrCAM, a member of the L1 subgroup of the Ig superfamily. By contrast, it does not induce outgrowth of retinal neurons despite the fact that these cells also express NrCAM, suggesting that in retinal cells the F11-NrCAM interaction alone is not sufficient to induce neurite extension. In this report we present a novel image analysis procedure to quantify neurite outgrowth and use it to demonstrate that F11 enhances the fibronectin-induced outgrowth response of embryonic retinal neurons. We reveal that NrCAM is the neuronal receptor mediating the enhanced outgrowth of retinal neurons, whereas the related F11-binding molecule NgCAM is not involved. Furthermore, we provide evidence that a beta1-integrin may represent the fibronectin-dependent receptor that cooperates indirectly with the F11-NrCAM pathway. Our results support the concept of a combinatorial labeling of cells in nervous system histogenesis by different classes of cell surface proteins, in particular by integrins and molecules of the Ig superfamily.  相似文献   

6.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

7.
The tumor-associated mucin-glycoprotein TAG-12 is strongly expressed in approximately 96% of all breast cancer patients and nearly 68% of all ovarian cancers. The experimental results of this work indicated that humoral immune response against TAG-12 is possible. Immunization with anti-idiotypic monoclonal antibodies produces this response. In this experiment, anti-idiotypic monoclonal antibodies represent the internal image of a specific epitope on TAG-12. Monoclonal antibody (MAb) 12H12 was selected to produce anti-idiotypic antibodies (anti-Ids) because of its high reactivity with TAG-12. Syngeneic murine anti-Ids were developed by immunization of BALB/c mice with the 12H12-Fab-KLH conjugate. A competitive assay with purified TAG-12 was utilized to identify anti-Ids with mirror image function. Two MAbs with "internal image" specificity were selected, 5H8 and 5H2. Two New Zealand White rabbits were immunized with 5H8. Serum samples tested 6 weeks after the initial immunization showed comparable titers against TAG-12. The binding capacities of the rabbit sera to different human breast as well as nonbreast cancer cell lines demonstrated strong binding with TAG-12-positive breast cancer cell lines. Competitive inhibition assays demonstrate that Ab3 and purified TAG-12 totally inhibit the binding of 12H12 antibody to TAG-12-positive cells. No inhibition was detectable with unrelated MAbs or normal mouse immunoglobulin. Binding assays with polyclonal Ab3 serum and several human cancer cell lines showed reactivity to nearly every tested cell line. Soluble TAG-12 showed no inhibition, indicating that this binding is due to a different set of idiotypes. Anti-Id 5H8 elicited an immune response to TAG-12. Utilization of anti-Id as a vaccine against the breast cancer-associated tumor antigen TAG-12 was successfully demonstrated in a xenogeneic animal model.  相似文献   

8.
The mechanisms whereby cell adhesion molecules (CAMs) promote axonal growth and synaptic plasticity are poorly understood. Here we show that the neurite outgrowth stimulated by NCAM-mediated fibroblast growth factor (FGF) receptor activation in cerebellar granule cells is associated with increased GAP-43 phosphorylation on serine-41. In contrast, neither NCAM nor FGF was able to stimulate neurite outgrowth in similar neurons from mice in which the GAP-43 gene had been deleted by homologous recombination. Integrin-mediated neurite outgrowth was unaffected by GAP-43 deletion. Both neurite outgrowth and rapid phosphorylation of GAP-43 in isolated growth cones required the first three Ig domains of a NCAM-Fc chimera and were stimulated maximally at 5 micrograms/ml (approximately 50 nM). Likewise, GAP-43 phosphorylation in isolated growth cones also was stimulated by an L1-Fc chimera. Both neurite outgrowth and NCAM-stimulated GAP-43 phosphorylation were inhibited by antibodies to the FGF receptor and a diacylglycerol lipase inhibitor (RHC80267) that blocks the production of arachidonic acid in response to activation of the FGF receptor. Direct activation of the FGF receptor and the arachidonic acid cascade with either basic FGF or melittin also resulted in increased GAP-43 phosphorylation. These data suggest that the stimulation of neurite outgrowth by NCAM requires GAP-43 function and that GAP-43 phosphorylation in isolated growth cones occurs via an FGF receptor-dependent increase in arachidonic acid.  相似文献   

9.
The L1/NgCAM cell adhesion molecule is involved in neurite outgrowth, axonal fasciculation and cell migration in the nervous system. We studied the effects of antibodies against L1 injected intracranially at various times before and after training 2-day-old chicks in a visual categorization task. Memory retention was tested 24 h post-training. Anti-L1 antibodies impaired task retention only when administered in three restricted time windows: immediately before training, at about 5.5 h after training and from 15 to 18 h after training. No amnesia was produced by injections before, between or after these sensitive periods (from -1 to +21 h relative to training). These results indicate that there are multiple post-training periods during which L1 is involved in the formation of long-term memory.  相似文献   

10.
We have studied the expression pattern of two cell adhesion proteins of the immunoglobin (Ig) superfamily, BEN/SC1/DM-GRASP (BEN) and the transient axonal glycoprotein TAG-1, during the development of the human nervous system. This study was performed by immunocytochemistry on sections of human embryos ranging from 4 to 13 weeks postconception. The overall distribution of the two proteins during development is very similar to that reported in other vertebrate species, but several important differences have been observed. Both proteins exhibit a transient expression on selected neuronal populations, which include the motor and the sensory neurons. In addition, BEN was also detected on virtually all neurons derived from the neural crest as well as in nonneuronal tissues. A major difference of expression with the chick embryo is that, in the motor neurons, BEN expression was not observed at early stages of development, thus arguing against a role of this molecule in pathfinding and fasciculation. BEN was observed to be restricted to subsets of motor neurons, such as the medial column at the upper limb level. Expression was also detected in a laterodorsal population of the ventral horn cells, which are likely to correspond to migrating preganglionic neurons that originate from the motor pool at the thoracic level. TAG-1 was found on commissural neurons and weakly on the sympathetic neurons; it was also detected on restricted nonneuronal populations. In addition, we observed TAG-1 expression in fibers that could correspond either to subsets of dorsal root ganglia (DRGs) central afferences (including the Ia fibers) or to the axons of association interneurons and in scattered motoneurons likely to correspond either to preganglionic neurons, to gamma-motoneurons, or to late-born motoneurons. Therefore, our results indicate that the molecular strategies used to establish the axonal scaffolding of the nervous system in humans are extremely conserved among the different vertebrates.  相似文献   

11.
The ability of cell adhesion molecules (CAMs) to transduce cell surface signals into intracellular responses is critical for developing neurons, particularly during axonal pathfinding and targeting. It has been suggested that different CAMs can promote neuronal outgrowth via activation of common neuronal CAM-specific second-messenger pathways, although the elements involved in this cascade could differ. Limbic system-associated membrane protein (LAMP), a member of the Ig superfamily, is a molecule that promotes cell adhesion and neurite outgrowth from specific populations of fetal neurons. In the present study, we show that LAMP can induce several types of calcium (Ca2+) signals. Neurite outgrowth is promoted if fetal hippocampal neurons are grown on lamp-transfected CHO cells. This LAMP-induced outgrowth of neurons is mediated in part through activation of L-type Ca channels. Application of soluble LAMP to cultures of fetal hippocampal neurons caused a sustained (up to 60 min) elevation of intracellular Ca2+ as measured by fluo-3 fluorescence on a confocal microscope. The number of responding hippocampal neurons was initially low, but increased with age in culture and the [Ca2+]i elevation was only partially decreased by an L-type Ca(2+)-channel blocker. In contrast, at all times in culture, only a small fraction of neurons from visual cortex responded to LAMP application and only with transient elevation of cytosolic Ca2+ (< 15 min). Based on these observations, LAMP appears to function primarily through homophilic interactions and acts in part by modulating intracellular Ca2+ levels during neurite outgrowth by increasing the Ca2+ influx through L-type calcium channels, but has additional effects on intracellular Ca2+ signaling at later developmental stages.  相似文献   

12.
Embryonic retinal neurons lose the ability to extend neurites on laminin-1 (LN-1) with increasing developmental age yet still do so on other laminin isoforms. However, after treatment of LN-1 with antibodies to "short-arm" regions or removal of the short arms proteolytically, LN-1 supports attachment and extension of neurites even by late embryonic retinal neurons. We have mapped a domain for antibody-mediated "activation" of LN-1 to the N-terminal end of the alpha1 chain. Furthermore, we show that the primary receptors used in the retinal neuron response to "activated" LN-1 are integrins alpha3 beta1 and alpha6 beta1; these are the same receptors used by these neurons for outgrowth on other LN isoforms. Interestingly, alpha3 beta1 is preferentially involved in neurite outgrowth, whereas alpha6beta1 preferentially mediates attachment and spreading. However, in cultures from alpha3 integrin-deficient mice, alpha6 beta1 mediates retinal ganglion cell neurite outgrowth and compensates for the absence of alpha3 beta1. Finally, we show that key features of the retinal neuron response to LN-1 also characterize neurons of the hippocampus, thalamus, and cerebral cortex; these include poor response to untreated LN-1, extensive neurite outgrowth on antibody-activated LN-1 or on fragment E8, and dependence of this response on integrin alpha6 beta1 and at least one other long arm-binding beta1 integrin. These data suggest that regulation of LN-1 function via the process of activation could have important consequences for axonal regeneration. Curiously, the data also imply that the mechanism of laminin activation involves enhanced function at sites that cannot be considered cryptic.  相似文献   

13.
Exogenously added gangliosides enhance sprouting, neurite outgrowth, and other neuronal activities; this effect may be initiated when a ganglioside binds to a membrane protein or when a ganglioside intercalates into the plasma membrane. To test whether binding to membrane proteins is sufficient for ganglioside-mediated activity, anti-idiotypic antibodies were generated that mimic the functional binding sites of the ganglioside GM1 as described by M. J. Riggott and W. D. Matthew (1996, Glycobiology, 6, 581-589). These anti-idiotypic antibodies are proteinaceous probes that model the biochemical and biological effects of gangliosides. Those anti-idiotypic ganglioside (AIG) monoclonal antibodies (mAb's) were selected based on their ability to bind a known GM1 binding protein, the beta-subunit of cholera toxin. These studies described neuronal cell surface proteins that were identified by immunocytochemistry and Western blotting using these AIG mAb's. Here we show that AIG mAb's mimic the functional properties of GM1 in that they facilitate neurite outgrowth from central and peripheral nervous system neurons in in vitro bioassays. In addition, AIG mAb binding modulates second messenger activity, suggesting that membrane protein binding alone is sufficient to invoke intracellular activation. The similarity in the pattern of protein tyrosine phosphorylation evoked by GM1 and the anti-idiotypic ganglioside antibodies suggests that the AIG mAb's modulate neurite outgrowth in a manner similar to that of GM1. Because antibodies cannot intercalate into the plasma membrane, these results suggest that the ganglioside GM1 can mediate neuronal cellular activity by binding to cell surface proteins.  相似文献   

14.
The neural cell adhesion molecule (N-CAM) inhibits astrocyte proliferation in vitro and in vivo, and this effect is partially reversed by the glucocorticoid antagonist RU-486. The present studies have tested the hypothesis that N-CAM-mediated inhibition of astrocyte proliferation is caused by homophilic binding and involves the activation of glucocorticoid receptors. It was observed that all N-CAM Ig domains inhibited astrocyte proliferation in parallel with their ability to influence N-CAM binding. The proliferation of other N-CAM-expressing cells also was inhibited by the addition of N-CAM. In contrast, the proliferation of astrocytes from knockout mice lacking N-CAM was not inhibited by added N-CAM. These findings support the hypothesis that it is binding of soluble N-CAM to N-CAM on the astrocyte surface that leads to decreased proliferation. Signaling pathways stimulated by growth factors include activation of mitogen-activated protein (MAP) kinase. Addition of N-CAM inhibited MAP kinase activity induced by basic fibroblast growth factor in astrocytes. In accord with previous findings that RU-486 could partially prevent the proliferative effects of N-CAM, inhibition of MAP kinase activity by N-CAM was reversed by RU-486. The ability of N-CAM to inhibit astrocyte proliferation was unaffected, however, by agents that block the ability of N-CAM to promote neurite outgrowth. Together, these findings indicate that homophilic N-CAM binding leads to inhibition of astrocyte proliferation via a pathway involving the glucocorticoid receptor and that the ability of N-CAM to influence astrocyte proliferation and neurite outgrowth involves different signal pathways.  相似文献   

15.
The functional significance of microtubule-associated protein 1B (MAP1B) phosphorylation during neuronal differentiation is unknown. In the present study we examined the hypothesis that the phosphorylation of MAP1B is required for neurite outgrowth. We reasoned that if MAP1B phosphorylation was important for neurite outgrowth then the intracellular distribution of phosphorylated MAP1B might exist as a discrete subset of the pattern for total MAP1B. We utilized a monoclonal antibody (mAb 7-1.1) that specifically recognizes a phosphorylated epitope on MAP1B and a polyclonal antiserum that recognizes all MAP1B protein to compare the distributions of phosphorylated and total MAP1B during neurite outgrowth. Phosphorylated MAP1B progressively accumulated in both the soluble and cytoskeletal fractions of differentiating cells. Similar proportions of total and phosphorylated MAP1B were associated with the cytoskeletons of differentiating PC12 cells. Within individual cells, phosphorylated MAP1B, in comparison with total MAP1B, was not limited to a particular intracellular domain. Phosphorylated MAP1B was present in both neurites and cell bodies. It was associated with fibrillar microtubules in neurites and growth cones, but it appeared nonfibrillar within cell bodies. In some cells that differentiated rapidly, there was little phosphorylated MAP1B in the early neurites despite the presence of extensive microtubules. In addition, although phosphorylated MAP1B increased in populations of mature PC12 cell cultures, increases in phosphorylated MAP1B did not always correlate with neurite outgrowth in individual cells. These results suggest that the phosphorylated isoform of MAP1B recognized by mAb 7-1.1 may not be required for neurite outgrowth.  相似文献   

16.
Cell-adhesion molecules (CAMs) are thought to play crucial roles in development and plasticity in the nervous system. This study tested for a role for cell adhesion and in particular, the recognition of two glycosyl epitopes (HNK-1 and oligomannoside) in the activity-driven sharpening of the retinotopic map formed by the regenerating retinal fibers of goldfish. HNK-1 is a prominent glycosyl epitope on many CAMs and extracellular matrix (ECM) molecules, including NCAM, L1, ependymin, and integrins, which have all been implicated in synaptic plasticity. To test for a role of HNK-1 in the sharpening process, we used osmotic minipumps to infuse HNK-1 antibodies for 7-21 days into the tectal ventricle starting at 18 days after optic nerve crush. Retinotopic maps recorded at 76-86 days postcrush showed a lack of sharpening similar to that seen previously with two antibodies to ependymin, an HNK-1-positive ECM component present in cerebrospinal fluid. The multiunit receptive fields at each point averaged 26 degrees versus 11-12 degrees in regenerates infused with control antibodies or Ringer's alone. The HNK-1 epitope also binds to the G2 domain of laminin to mediate neuron-ECM adhesion. To test for a role for laminin, a polyclonal antibody was similarly infused and also prevented sharpening to approximately the same degree. The results support a role for the HNK-1 epitope and laminin in retinotectal sharpening. The oligomannoside epitope (recognized by monoclonal antibody L3) on the CAM L1 interacts with NCAM on the same cell to promote stronger L1 homophilic interactions between cells. Both an L1-like molecule and NCAM are prominently reexpressed in the regenerating retinotectal system of fish. Infusion of oligomannosidic glycopeptides resulted in decreased sharpening, with multiunit receptive fields that averaged 22.7 degrees. Infusions of mannose-poor glycopeptides less prominently disrupted sharpening, with average multiunit receptive fields of 18 degrees. Thus, oligomannosidic glycans in particular may play a role in retinotopic sharpening. Blocking glycan-mediated interactions between CAMs and ECM molecules could decrease the extent of exploratory growth of retinal axon collaterals, preventing them from finding their retinotopic sites, or could interfere with L1 or NCAM and laminin binding at the synaptic densities preventing stabilization of retinotopically appropriate synapses. Together, these results support a prominent role for cell adhesion and glycan epitopes in visual synaptic plasticity.  相似文献   

17.
A number of experimental paradigms have been used to demonstrate that NCAM, N-cadherin, and L1 stimulate axonal growth. The molecular basis of this response has been extensively studied and a range of agents that inhibit neurite outgrowth stimulated by the above CAMs, but not integrins, have now been identified. These studies pointed to the activation of a tyrosine kinase-PLCgamma cascade as being important for the neurite outgrowth responses stimulated by all three CAMs, and this was substantiated by the identification of agents that could activate the cascade and mimic the growth response. In this review we will suggest that the neurite growth response stimulated by these CAMs is mediated by activation of the fibroblast growth factor receptor (FGFR) in neurons and that this results in the recruitment and activation of PLCgamma via interactions of its SH2 domain with the activated receptor. In this context the key events downstream from activation of PLCgamma required for neurite growth appear to be the conversion of diacylglycerol (DAG) to arachidonic acid (AA) via DAG lipase activity, followed by an increased influx of calcium into the neurons. The evolutionary conservation of putative binding motifs between the above CAMs and the FGFR suggests that activation of the FGFR-PLCgamma cascade by the CAMs might involve a direct CAM-FGFR interaction. The identification of the binding motifs also allows for predictions to be made concerning whether other CAMs might directly interact with the FGFR.  相似文献   

18.
L1, a neural cell adhesion molecule, is involved in neurite outgrowth, migration and fasciculation. Although L1 is a membrane glycoprotein expressed on neural cells, the soluble form of L1 is generated in vivo by proteolysis. In the present study, a stable transfectant of Chinese hamster ovary (CHO) cells secreting human L1 without cytoplasmic and membrane spanning domains was generated, and the function of the secreted L1 was examined. Explants from embryonic chick brain stem were cultured on a substrate coated with polyethylenimine (PEI) alone, on substrate-bound L1 or in medium containing soluble L1. The neurites induced by L1, both the substrate-bound form and the soluble form, were 2-3 times longer than those cultured on PEI. The ability of the soluble L1 to induce neurite formation was slightly greater than that of the substrate L1. The present results demonstrated that neurite outgrowth was induced not only by substrate-bound L1 but also by soluble L1. Soluble L1 could be a pharmaceutical candidate for the promotion of nerve regeneration.  相似文献   

19.
The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors comprises a family of highly homologous subunits which assemble into oligomeric protein complexes. Alterations in subunit composition are developmentally regulated, leading to functionally distinct receptor populations. Here, the contribution of the subunit NR2B to NMDA receptor complex formation was analysed in neonatal rat brain, employing polyclonal antibodies raised against NR2B-specific synthetic peptides. By hydrodynamic size fractionation of the solubilized receptor protein and chemical cross-linking, NR2B antigen was found to be associated with several protein species of up to 690 kDa molecular weight. These observations show NR2B to be part of a multimeric receptor complex. Fractionation of cortex homogenates from E18 rat embryos on sucrose density gradients revealed NR2B polypeptide to be highly enriched in axonal growth cones. A similar distribution was found by fluorescence microscopy of immature hippocampal neurons, showing a preferential accumulation of NR2B antigen in axonal growth cones and varicosities. In mature cells, NR2B antigen displayed a punctated distribution pattern with redistribution to somato-dendritic spheres. The association of NR2B with axonal growth cones and processes of immature neurons suggests a role of NMDA receptors in the regulation of neurite outgrowth and migration.  相似文献   

20.
Ganglioside stimulated neurite outgrowth may be due to ganglioside binding to membrane proteins or to intercalation into the membrane. To test that ganglioside binding proteins could be found on neuronal surfaces, anti-idiotypic ganglioside monoclonal antibodies (AIG mAbs) were generated to mimic the biological properties of the GM1 ganglioside. The AIG mAbs were identified by their ability to bind to a known GM1 binding protein, the beta-subunit of cholera toxin. For the two AIG mAbs studied, AIG5 and AIG20, binding to beta-CT was blocked most strongly by GM1. This data also suggests that AIG5 and AIG20 mimic different but overlapping epitopes of the ganglioside GM1. Western blotting and immunoprecipitation of mammalian tissues reveals four potential ganglioside binding proteins of molecular weight 93, 66, 57, and 45 kDa. Immunocytochemistry demonstrates neuronal surface label with the AIG mAbs, which suggests that gangliosides, enriched on the neuronal surface membrane, are co-localized with putative ganglioside binding proteins. In bioassays, the AIG mAbs promote neuronal sprouting. This shows that these antibodies can be used to study the biological effects of ganglioside binding to neuronal surface proteins, and the role of gangliosides in the activation of neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号