首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The quantitative determination of pesticide binding to dissolved humic substances is relevant to both water treatment operation using activated carbon adsorption process and the application of transport models that predict the environmental distribution patterns of a given hydrophobic contaminant. In this study and in a first set of experiments, the extent of binding between (i) three pesticides of environmental concern, aldicarb, lindane and pentachlorophenol, and (ii) dissolved commercial humic acid and soil extracted fulvic acid, was determined using dialysis experiments and water solubility enhancement tests. In a second set of experiments, the influence of dissolved humic substances or pesticide on the retention of the other co-adsorbate onto activated carbon was investigated in binary systems. It was found that association was negligible for aldicarb and that the pesticide sorption onto activated carbon was not affected by humic acid (8.5 mg liter(-1) DOC). The association constants K for lindane and pentachlorophenol were identical in the presence of fulvic acid (logK=4.1) but lower than that observed with humic acid. In the presence of humic acid, binding affinity for pentachlorophenol (logK=4.6) was higher than the one observed for lindane (logK=4.4), despite its much higher water solubility. This observation suggests that the aromatic character of the pentachlorophenol molecule contributes to association interactions with humic acid. From co-adsorption experiments onto activated carbon it was found that fulvic acid (7.7 mg litre(-1) DOC) slightly enhances sorption kinetics of pentachlorophenol. Lindane (1 mg litre(-1)) does not affect sorption kinetics for fulvic acid but markedly enhances both the sorption kinetics and adsorptive capacity for humic acid. Activated carbon retention of dissolved humic substances or pesticide appears to be enhanced by the association potential that exists between these co-adsorbates in some binary systems.  相似文献   

2.
Degradation of aquatic humic material by ultraviolet light   总被引:1,自引:0,他引:1  
Peter Backlund 《Chemosphere》1992,25(12):1869-1878
Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide (UV/H2O2. The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined.

The DOC content and the UV-abs. of the water decreased substantially during treatment with UV/H2O2. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and UV/H2O2-treated waters, respectively. No mutagenic activity was generated by the UV irradiation or the UV/H2O2 treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.  相似文献   


3.
R. Wacker  H. Poiger  C. Schlatter 《Chemosphere》1986,15(9-12):1473-1476
14C-1,2,3,7,8-Pentachloroaibenzodioxin (P5CDD), administered to rats as single oral dose (1.69–1.75 μg/animal, 8.42–10.06 μg/kg) was eliminated with a half life of 29.5±2.7 days from the body of the animals. Residual P5CDD was located mainly in the liver and the adipose tissue. In the bile, polar metabolites of P5CDD were detected but no unmetabolized P5CDD.  相似文献   

4.
Hu XL  Peng JF  Liu JF  Jiang GB  Jönsson JA 《Chemosphere》2006,65(11):1935-1941
The effect of some environmentally relevant factors including salinity, pH, and humic acids on the availability of bisphenol A (BPA) was evaluated by using the negligible-depletion solid-phase microextraction (nd-SPME) biomimetic method. With the variation of salinity (0–500 mM NaCl) and pH (5.0–8.5) of aqueous solutions, the partition coefficients of BPA between the nd-SPME fiber and the aqueous solution varied in the range of log D = 3.55–3.86, which indicates that the salinity and pH can influence the availability of BPA. By using Acros humic acid as model dissolved organic matter (DOM), it was also demonstrated that the environmental factors such as salinity and pH could affect the partitioning of BPA between DOM and aqueous solutions. The determined partition coefficients of BPA between dissolved organic carbon (DOC) and aqueous solutions were in the range of log DDOC = 4.03–5.60 for Acros humic acid solutions with 1–50 mg l−1 DOC. The influence of salinity and pH on log DDOC was more significant at low concentration (0–5 mg l−1) of DOC.  相似文献   

5.
Maaret Kulovaara 《Chemosphere》1993,27(12):2333-2340
DDT and benzo[a]pyrene (BaP) were added both separately and as a mixture to filtered (0.22 μm) humic surface water samples. Following a contact time of 1 d, the fraction bound to dissolved organic matter and the freely dissolved part were separated by using reversed-phase octadecyl silica cartridges. The enriched solutes were analysed by gas chromatography-mass spectrometry in the selective ion monitoring (GC-MS/SIM) mode. Partition coefficients to dissolved organic matter, calculated on the basis of the recovery data, varied between 2.0 × 104 and 6.6 × 104 mL/g for BaP depending on the experimental conditions, whereas the corresponding values for DDT (0.6 × 104 mL/g) showed no significant variation.  相似文献   

6.
Microbial degradation of chlorinated dioxins   总被引:2,自引:0,他引:2  
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo-p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions. Anaerobic sediments have been shown to convert tetrachloro- to octachlorodibenzo-p-dioxins to lower chlorinated dioxins including monochlorinated congeners. Taken as a whole, these findings indicate that biodegradation is likely to contribute to the natural attenuation processes affecting PCDD/F compounds.  相似文献   

7.
The effect of organic matter on the solid-phase extraction (SPE) efficiency for pesticides belonging to different chemical groups (urea-derivatives, carbamates and triazines) and having different polarities, was simultaneously studied for the first time in pure and simulated water samples. SPE was carried out in precolumns packed with C18 silica or styrene-divinylbenzene copolymer PLRP-S phases on-line coupled to high performance liquid chromatography (HPLC) analysis. Retention factors in water (k'(W)) were estimated for 25 compounds and used for the calculation of the theoretical breakthrough volume (Vb(T)) in pure water. Experimental breakthrough volumes (Vb(E)) were first determined using purified and deionized water as the matrix for selected compounds having Vb(T) < 500 mL; then, the same water with an added humic acid sodium salt (HA) at 0.4-5.6 mg/L of dissolved organic carbon (DOC) content, was used as the matrix for compounds having VbE < 500 mL in pure water. Several polar pesticides showed negative linear or logarithmic Vb(E) curves depending on HA content; their recoveries were also determined in environmental samples having low dissolved organic carbon values, between 0.5-6.4 mg/L. A similar behavior was observed for these compounds in simulated and natural water samples, where DOC concentration and the percolated volume (Vp) mainly determine the solute recoveries values. However, the variation of recoveries as a function of DOC content could be negative or null depending on the two examined conditions (Vp lower or larger than Vb(E) in pure water). Results demonstrated that breakthrough volume must always be considered to correctly interpret the participation of dissolved humic material on the SPE efficiency of organic micropollutants in water.  相似文献   

8.
We have calculated the values of pkow, water solubility, and Koc for chlorinated, brominated and mixed halogenated dibenzodioxins and dibenzofurans that have been identified in environmental samples. From the results it can be concluded that brominated and mixed halogenated dioxins and furans will show an ecological behaviour similar to that of the pure chlorinated compounds.  相似文献   

9.
Dissolved organic carbon/water distribution coefficients (K(DOC)) were measured for a selection of PCBs with octanol/water partition coefficients (K(OW)) ranging from 10(5.6) to 10(7.5). A solid phase dosing and sampling technique was applied to determine K(DOC) to Aldrich humic acid. This technique is in particular suitable for determining the distribution of very hydrophobic chemicals to complex matrices like humic acids. The K(DOC) values were calculated from the experimental data using a linear model. Determined K(DOC)'s were evaluated in relation to octanol/water partition coefficients of the test compounds, and compared to literature data. Measured K(DOC) values were somewhat higher than literature data, which can probably be attributed to the overestimation of freely dissolved aqueous concentration as a result of incomplete phase separation in other studies, and to the unique character of Aldrich humic acid as a "sorbent" or co-solute or to the fact that Aldrich humic acid is not a typical DOC, and other (adsorption) processes can occur. This study reports DOC distribution coefficients that belong to the highest ones ever measured. In addition, the DOC distribution was discussed in relation to current risk assessment modeling.  相似文献   

10.
The effect of organic matter on the solid-phase extraction (SPE) efficiency for pesticides belonging to different chemical groups (urea-derivatives, carbamates and triazines) and having different polarities, was simultaneously studied for the first time in pure and simulated water samples. SPE was carried out in precolumns packed with C18 silica or styrene-divinylbenzene copolymer PLRP-S phases on-line coupled to high performance liquid chromatography (HPLC) analysis. Retention factors in water (k'W) were estimated for 25 compounds and used for the calculation of the theoretical breakthrough volume (VbT) in pure water. Experimental breakthrough volumes (VbE) were first determined using purified and deionized water as the matrix for selected compounds having VbT < 500 mL; then, the same water with an added humic acid sodium salt (HA) at 0.4–5.6 mg/L of dissolved organic carbon (DOC) content, was used as the matrix for compounds having VbE < 500 mL in pure water. Several polar pesticides showed negative linear or logarithmic VbE curves depending on HA content; their recoveries were also determined in environmental samples having low dissolved organic carbon values, between 0.5–6.4 mg/L. A similar behavior was observed for these compounds in simulated and natural water samples, where DOC concentration and the percolated volume (Vp) mainly determine the solute recoveries values. However, the variation of recoveries as a function of DOC content could be negative or null depending on the two examined conditions (Vp lower or larger than VbE in pure water). Results demonstrated that breakthrough volume must always be considered to correctly interpret the participation of dissolved humic material on the SPE efficiency of organic micropollutants in water.  相似文献   

11.
Brominated flame-retardants (BFRs) are used as additives in plastics to decrease the rate of combustion of these materials, leading to greater consumer safety. As the use of plastics has increased, the production and use of flame-retardants has also grown. Many BFRs are persistent and have been detected in environmental samples, raising concerns about the biological/toxicological risk associated with their use. Most BFRs appear to be non-toxic, however there is still some concern that these compounds, or possible contaminants in BFRs mixtures could interact with cellular receptors. In this study we have examined the interaction of decabromodiphenyl ether, Firemaster BP4A (tetrabromobisphenol A), Firemaster PHT4 (tetrabromophthalic anhydride), hexabromobenzene, pentabromotoluene, decabromobiphenyl, Firemaster BP-6 (2,2,4,4,5,5-hexabromobiphenyl) and possible contaminants of BFR mixtures with the Ah receptor. Receptor binding and activation was examined using the Gel Retardation Assay and increased expression of dioxin responsive genes was detected using the reporter gene based CALUX assay. The results demonstrate the ability of BFRs to activate the AhR signal transduction pathway at moderate to high concentrations as assessed using both assays. AhR-dependent activation by BFRs may be due in part to contaminants present in commercial/technical mixtures. This was suggested by our comparative analysis of Firemaster BP-6 versus its primary component 2,2,4,4,5,5-hexabromobiphenyl. Some technical mixtures of brominated flame-retardants contain brominated biphenyls, dioxins or dibenzofurans as contaminants. When tested in the CALUX assay these compounds were found to be equivalent to, or more active than their chlorinated analogues. Relative effective potency values were determined from dose response curves for these brominated HAHs.  相似文献   

12.
Lee RT  Shaw G  Wadey P  Wang X 《Chemosphere》2001,43(8):1063-1070
Soils initially contaminated with 36Cl in the chloride form were subjected to solid–liquid extractions using a variety of reagents including deionised water and 1 M sodium hydroxide (NaOH). 1 M NaOH was found to result in the greatest recovery of 36Cl from the soils, a result which provided initial evidence that radioactive chlorine became attached to humic substances present naturally within the soils. Deionised water and 1 M NaOH extracts were subjected to analysis involving separation by gel filtration chromatography (GFC). It was found that 36Cl in 1 M NaOH extracts associated preferentially with low molecular weight (LMW) fractions of humic substances whereas, in deionised water extracts, 36Cl appeared to be present exclusively in the chloride form. Previous literature evidence, mainly from highly organic forest soils, suggests that conversion of stable chlorine from chloride to organic forms can occur as a result of biological action. The present paper also presents good evidence for the specific attachment of stable chlorine (37Cl) to a LMW humic fraction, again demonstrated using GFC separation. Current risk assessments of the deep geological disposal of solid radioactive wastes containing 36Cl typically assume a very low degree of sorption based on the notion that the predominant environmental species of radiochlorine is chloride. This paper concludes with a brief discussion on the implications of organochlorine formation in the biosphere for assessment of the radiological impact of deep geological disposal of solid radioactive wastes.  相似文献   

13.
Peat samples from four ombrotrophic and two minerotrophic peat bogs in New Brunswick, Canada, have been analyzed for polychlorinated dioxins and furans (PCDD/DF's) as well as other organochlorine compounds. Data from each bog show occasional low levels of 2,3,7,8-substituted tetra-through octachloro dioxins and furans. Mono-through trichlorodioxins and furans have also been identified.

A consistent pattern was observed among the TCDD's and TCDF's which was reproducible across all peat samples analyzed. A single TCDF isomer (2468-TCDF) predominates over all other isomers whereas two isomers of TCDD were prominent (1,3,6,8-TCDD and 1,3,7,9-TCDD). This distinct isomer pattern is present at all depths and is different from that of atmospheric deposition or known sources of PCDD/DF's (eg. fly ash, pulp and paper effluent etc). The pattern is replicated with in vitro oxidative coupling of 2,4-dichlorophenol at pH 2.9 using a commercially available chloroperoxidase from the fungus Caldariomyces fumago.

Significant incorporation of 36Cl-occurred in peat. Autoclaving decreased incorporation while adding casein hydrolysate increased it. The incorporation mirrored the metabolic activity (CO2 production) of samples consistent with organochlorine synthesis being due to biological activity.

Total Organic Halide (TOX) levels in peat show a wide range in values reaching ca. 1000 ppm at mid-depth in the ombrotrophic Kelly's Bog. TOX in Kelly's Bog occurs at all depths and, since the topography probably excludes leaching from surrounding areas, a local origin of organochlorines is suggested.

Chloroform and a range of chlorinated aromatic compounds (chlorophenols, chlorophenoxy and chlorobenzoic acid derivatives) have also been identified in peat.

Our findings to date are consistent with hypothesis for a biogenic origin for at least some of the organochlorine compounds, including some of the PCDD/DF's, found in peat bogs.  相似文献   


14.
Lippold H  Gottschalch U  Kupsch H 《Chemosphere》2008,70(11):1979-1986
Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization.

In this paper, solubilization of 14C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene–humic interaction. This explanation is based on octanol–water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.  相似文献   


15.
The sorption of the pyrethroid, esfenvalerate, to the dissolved and/or dispersed fraction of eight different natural humic compounds has been investigated. The dissolved organic matters (DOMs) included in this study originate from ground water, soil pore water, and surface waters. Sorption was modelled at DOM concentration levels where equilibrium partitioning of esfenvalerate between DOM and the aqueous bulk phase prevails. The inherent characteristics of the eight different humic materials, quantified in the preceding paper by Thomsen et al. (2002, this issue (PII: S0045-6535(02)00335-1)), have been used as explanatory variables for modelling this equilibrium partitioning. Using a reverse QSAR approach based on by projection-into-latent-structure regression (PLS-R) inherent sorbent properties determining for the sorption affinity of esfenvalerate to DOM were analysed. For all humic substances a decrease in the DOM-normalised equilibrium-partitioning coefficient, KDOM, with increasing concentration of DOM was observed. Significant variations in KDOM values, as function of the inherent characteristics of the individual humic substances, were found at DOM concentrations of 75 and 100 ppm, respectively. The latter is a strong indication of variations in sorption mechanisms of esfenvalerate to DOM of varying inherent properties. Groupings in the principal property space quantifying DOMs may indicate that separate models are needed for quantifying the equilibrium partitioning to different classes of DOM.  相似文献   

16.
矿物复合PAC混凝去除给水中腐殖酸的研究   总被引:2,自引:0,他引:2  
赵春禄  晗桢  寻涛 《环境工程学报》2009,3(6):1041-1043
为了降低饮用水中有机微污染物的浓度,对矿物高岭土复配聚合氯化铝(PAC)吸附混凝共沉降去除腐殖酸进行了研究,结果表明:矿物高岭土与PAC复配的最佳量均为12 mg/L,此时水样浊度、腐殖酸去除率分别达到98.9%和97.9%,出水残余铝浓度0.16 mg/L。高岭土复配对于处理后水中铝形态也产生了影响,与单独使用PAC相比,总铝浓度降低了24%,特别是对人体毒害较强的溶解态铝浓度降低了71%。  相似文献   

17.
The enhanced solubility of petroleum-derived compounds in humic acid solutions is the basis for a new groundwater remediation technology. In this unique pilot-scale test, a stationary contaminant source consisting of diesel fuel was placed below the water table in a model sand aquifer (1.2 x 5.5 x 1.8-m deep) and flushed with water at a flow rate of 2 cm/h over 5 years. At 51 days, laboratory grade humic acid was added to the water and maintained at a level of approximately 0.8 g/l. The addition of humic acid had only a small impact on the aqueous transport of the BTEX components, which were rapidly dissolved from the diesel, but had a large effect on the flushing of PAHs, including methylated naphthalenes (MNs). Binding to aqueous humic acid enhanced the solubilization of MNs two- to tenfold. During aqueous transport, biodegradation of the BTEX and PAHs occurred, limiting the lateral and longitudinal extent of the diesel contaminant plume in the model aquifer. It appears that through enhanced solubilization, the overall biodegradation rate of the MNs was increased. As the various MNs were depleted from the diesel source, the MN plume shrank and then disappeared.  相似文献   

18.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   

19.
The affinity of dissolved organic matter (DOM) for binding a polycyclic aromatic hydrocarbon, benzo(a)pyrene (BaP), was measured for 11 surface and ground waters and a commercial humic acid. The hydrophobic-acid (HbA) and hydrophobic-neutral (HbN) compositions of the DOM, solution absorptivity at 270nm (ABS270), and DOM molar volumes were determined. Waters enriched in HbA material had a larger molar volume and higher aromatic content (as indicated by the ABS270). There was a good correlation between the size and HbA content of the DOM from the different sources and the Kdom for binding BaP. An excellent predictive relationship (r2 = 0.9) was demonstrated between the ABS270 of a water and the Kdom for binding BaP. Based on these results, it is suggested that binding of BaP to DOM depends not only on the hydrophobicity of DOM, but also on the existence of an open structure within the DOM to provide access of the aqueous solute to hydrophobic domains within the DOM.  相似文献   

20.
R. M. Baxter  John Malysz 《Chemosphere》1992,24(12):1745-1753
Three preparations of humic material (a commercial humic acid and material isolated from soil and from water) were analysed by electrophoresis on polyacrylamide gradient gel slabs. All gave similar patterns showing four bands of material of molecular weights apparently ranging from a few hundred to about 20,000 as estimated by comparing their mobilities with those of protein markers. The high molecular weight material from bleached kraft mill effluent (BKME) showed similar patterns with the addition of completely unresolved material of molecular weight up to about 100,000.

Electrophoresis on polyacrylamide slabs may prove valuable for the study of humic substances and other ill-defined polymeric materials.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号