首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Sr2Mg Si2O7:Tb3+,Ce3+ phosphors were synthesized by solid-state reaction and placed in a muffle furnace in a reducing atmosphere at 1300 oC for 3 h. Photoluminescence properties and energy transfer were investigated. The Ce3+/Tb3+ energy transfer was thoroughly investigated by their emission/excitation spectra and photoluminescence lifetime, there was shortened lifetime of Ce3+(from 51.31 to 50.06 ns) which could support evidence of energy transfer from Ce3+ to Tb3+ in the host. The varied emitted color of Sr1.97–yMg Si2O7:0.03Tb3+,y Ce3+ phosphors could be achieved by altering the concentration of Ce3+, the chromaticity coordinates(x, y) varied from(0.225, 0.376) to(0.172, 0.231). In Sr1.96 Mg Si2O7:0.03Tb3+,0.01 Ce3+ phosphors, the results indicated that Sr2 Mg Si2O7:Tb3+,Ce3+ might be useful as tunable phosphors for ultraviolet white-light-emitting diodes.  相似文献   

2.
A series of NaBa1-x-yPO4: xCe3+, yTb3+ phosphors were synthesized by solid-state reaction method. The crystal structure, photoluminescence emission and excitation spectra and decay times of the phosphors were carefully investigated. The results revealed that an efficient energy transfer occurred from Ce3+ to Tb3+ ions in NaBaPO4 host by means of dipole-dipole interactions and the critical distance of the energy transfer was about 0.638 nm. Moreover, the phosphor emitted strong green emission under UV excitation, indicating that the phosphors are potentially useful as a highly efficient, green-emitting phosphor.  相似文献   

3.
A series of K3Gd(PO4)2:Tb3+,Sm3+ phosphors were synthesized through solid state reaction. By co-doping Tb3+ and Sm3+into K3Gd(PO4)2 host and singly varying the doping concentration of Sm3+, tunable colors from green to yellow and then to orange were obtained in K3Gd(PO4)2:Tb3+,Sm3+ phosphors under the excitation at 373 nm. The energy transfer process from Tb3+ to Sm3+ was verified through luminescence spectra and fluorescence decay curves. Moreover, the energy transfer mechanism was demonstrated to be the quadrupole-quadrupole interaction. The results indicated that K3Gd(PO4)2:Tb3+,Sm3+ phosphors could be a potential application for n-UV white light emitting diodes.  相似文献   

4.
BaAl12O19:Tb,Ce phosphors were prepared by sol-gel technique,the crystalline structures of samples characterized by XRD,and the luminescence properties and energy transfer between Ce3+ and Tb3+ were investigated.The results indicated that the emission intensity and the excitation wavelength range of Tb3+ increased when Ce3+ was doped.It demonstrated that the Ce3+ added in the BaAl12O19:Tb could deliver energy to Tb3+,and Ce3+ was not luminous by itself.The relative emission intensity of Tb3+ at wavelength of 548 nm was the strongest by Tb3+/Ce3+ ratio of 2:1,when excited at 310 nm,which was the characteristic adsorption wavelength of Ce3+.  相似文献   

5.
Tb3+ and Ce3+ co-activated LiZnPO4 phosphors with high luminescence efficiency were synthesized by a high temperature solid-state reaction at 1000 oC for 3 h. The XRD patterns, photoluminescence spectra and SEM were recorded and the effects of Tb3+ and Ce3+ concentration, sintering condition on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet (200-300 nm) radiation showed a dominant peak at 543 nm attributed to the 5D4→7F5 transition of Tb3+, which was greatly en-hanced by the co-doping of Ce3+, indicating that there occurred an efficient non-radiative energy transfer from Ce3+ to Tb3+. The optimal dop-ing concentrations of Tb3+ and Ce3+ were determined to be 9% and 10%, respectively.  相似文献   

6.
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.  相似文献   

7.
Ce3+/Eu2+ co-doped LiBaBO3 phosphor was synthesized by high temperature solid-state reaction method, and its luminescent character- istics were investigated. The hues of the LiBaBO3:Ce3+, Eu2+ phosphor varies from blue to white and eventually to yellow-green by properly tuning the Ce3+/Eu2+ ratio. Under UV excitation, white light was generated by coupling blue and yellow-green emission bands attributed to Ce3+ and Eu2+ emissions, respectively. The luminous efficacy of LiBaBO3:1%Ce3+, 2%Eu2+ calculated from ...  相似文献   

8.
Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.  相似文献   

9.
Oxonitridosilicate phosphors with compositions of Y 1-x Ce x SiO 2 N (x=0-0.1) were synthesized by a new synthetic route based on a solid state reaction among YSi, CeSi, SiO 2 and Y 2 O 3 compounds at high temperature and high pressure. The photoluminescence properties dependent on Ce concentration and temperature were investigated. Concentration quenching occurred when the doped Ce 3+ concentration was more than 3 mol.%. The emission spectra showed red shifts from 430 to 447 nm with the increased Ce concentration from 0.5 mol.% to 10 mol.%. The quenching temperature was estimated as ~380 K. The chromaticity coordinates of the excitation and emission spectra were stable against the temperature. This study showed these YSiO 2 N:Ce 3+ phosphors the potential applications in the three-RGB phosphor-converted white LEDs.  相似文献   

10.
The blue-green emitting Eu2+ and Nd3+ doped polycrystalline barium aluminate(BaAl2O4:Eu2+,Nd3+) phosphor, was prepared by a solution-combustion method at 500 oC without a post-annealing process. The characteristic variation in the structural and luminescence properties of the as-prepared samples was evaluated with regards to a change in the Ba/Al molar ratio from 0.1:1 to 1.4:1. The morphologies and the phase structures of the products were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS), while the optical properties were investigated using ultra-violet(UV) and photoluminescence(PL) spectroscopy, respectively. The XRD and TEM results revealed that the average crystallite size of the BaAl2O4:Eu2+,Nd3+ phosphor was about 70 nm. The broad-band UV-excited luminescence of the phosphors was observed at λmax=500 nm due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The PL results indicated that the main peaks in the emission and excitation spectrum of phosphor particles slightly shifted to the short wavelength due to the changes in the crystal field due to the structure changes caused by the variation in the quantity of the Ba ions in the host lattice.  相似文献   

11.
李其华  雷春华  汪萍  张帆  张家英 《稀土》2012,33(1):11-14
采用高温固相反应法制备了La2O2S∶Tb3+、La2O2S∶Tb3+,RE3+(RE=Dy,Gd,Ce,Sm)荧光粉样品并进行了相关表征。结果表明,合成样品的晶体结构与La2O2S相同,为六方晶系;荧光粉颗粒的形貌多为长方形片状;发射光谱由494 nm、545 nm、587 nm、622 nm的一系列锐发射峰组成。研究发现Tb3+的掺杂浓度对样品主发射峰545 nm的发光强度影响很大,且在摩尔分数x(Tb3+)=0.02时达到最强。稀土离子Dy3+、Gd3+对La2O2S∶Tb3+荧光粉的发光有明显的敏化作用。  相似文献   

12.
The Ba1-xSrxMgSiO4:Eu2+,Mn2+ phosphors were prepared by solid-state reaction. Their photoluminescence properties were inves-tigated with fluorescence spectrum and CIE chromaticity. The emission color of Eu2+ in Ba0.98-xSrxMgSiO4:0.02Eu2+ could be tuned from green to blue by adjusting the content of Sr2+. The blue emission of Eu2+ overlapped well with the excitation spectra of Mn2+, leading to an ef-ficient energy transfer from Eu2+ to Mn2+ in Ba0.98-xSrxMg1-ySiO4:0.02Eu2+,yMn2+. Ba0.93Sr0.03Mg1-ySiO4:0.02Eu2+,yMn2+ could emit three ef-ficient broad bands at 440, 530 and 640 nm. The emission color of Ba0.93Sr0.03Mg1-ySiO4:0.02Eu2+,yMn2+ could be tuned from greenish blue to yellowish white by increasing the content of Mn2+ from 0 to 0.1. By changing the content of Sr2+/Mn2+, white-light with different hues could be conveniently obtained in the Ba1-xSrxMgSiO4:Eu2+,Mn2+ phosphors. The results showed that Ba1-xSrxMgSiO4:Eu2+,Mn2+ is a promising single-phased tricolor phosphor in the fabrication of W-LED.  相似文献   

13.
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.  相似文献   

14.
The luminescence intensity of emission peak at around 525 nm decreased in the Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphors. Mg2+ ion, which was likely incorporated into the Sc3+ position of the host crystal, was co-doped to adjust the crystal field and compensate for the excess positive charge due to the doping of Ce3+. The green emission belonged to the 5d→4f transition of Ce3+ moved toward longer wavelength by addition of Mg2+ in Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphor, which could increase the brightness of the phosphor. However, the position of weakening of luminescence intensity at around 525 nm remained basically unchanged by increasing the amount of Mg2+. The results showed that the weakening of luminescence intensity at around 525 nm caused by the absorption of Er3+, which had little influence on the environment of the crystal field.  相似文献   

15.
The long persistent phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02) were prepared by a high temperature solid state reaction. All samples showed a broad band emission peaking at ~510 nm, which could be ascribed to Eu2+ transition between 4f65d1 and 4f7 electron configurations. With the increase of substitution of Ho3+ ions for the Dy3+ ions in the as-prepared phosphors Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02), the initial intensity of the afterglow obviously decreased. From the thermoluminescence (TL) curves of the samples, we concluded that codoped Ho3+ ions led to a decline of the trap depth and redistribution of the trap. This may be responsible for the change of afterglow of Sr3Al2O6:Eu0.012+,Dy0.02-x3+,Hox3+ (x=0, 0.01, 0.02).  相似文献   

16.
采用溶胶-凝胶法合成了一系列适合紫外-近紫外激发的(1-X)Sr2SiO4:XTb3+(X=0,0.01,0.02,0.03,0.04,0.05,0.06)绿色荧光粉,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱(PL)研究了样品的结构及发光性能.由XRD的检测结果可知,合成样品属于单斜晶系的β-Sr2SiO4相.由SEM图可知,所有样品都呈无规则块状结构.当监测波长为546 nm,样品的激发光谱的主峰位于370 nm处,属于Tb3+的4f-4f特征跃迁吸收.当激发波长分别为285 nm和250 nm,所有样品在488 nm,547 nm,586 nm,623 nm处都出现了1个强发射峰,分别对应Tb3+的5D4→7F6、5D4→7F5、5D4→7F4和5D4→7F3电子跃迁.最强发射峰位于547 nm处,呈现特征为绿光发射.随Tb3+掺杂量增大,发射强度呈现出先增大后减小的变化趋势,即存在浓度猝灭效应.当Tb3+掺杂量为X=0.03时,样品的发光强度最大.   相似文献   

17.
Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号