首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two colour phosphor Ba 2 Mg(BO3)2:Ce3+,Eu2+,Na+ was synthesized using solid-state reaction method.Luminescence of Ba2Mg(BO3)2:Ce3+,Eu2+,Na+ showed 416 and 618 nm emission bands attributed to Ce3+ and Eu2+ emission, respectively. Energy transfer occurred from Ce3+ to Eu2+ through a significant overlap of Eu 2+ excitation spectrum with Ce3+ emission spectrum in Ba 2 Mg(BO3)2. They also showed that under the excitation of UV radiation, bluish or yellowish white light was generated by coupling a broad blue emission band and a red emission band.By combining with green phosphor, Ba2Mg(BO3 ):Ce3+,Eu2+,Na+ phosphor showed potential application for white light-emitting diodes (LEDs).  相似文献   

2.
A series of red phosphors Eu3+-doped MMgP2O7(M=Ca,Sr,Ba) were synthesized by solid-state reaction method.X-ray powder diffraction(XRD) analysis confirmed the formation of pure CaMgP2O7,SrMgP2O7 and BaMgP2O7 phase.Photoluminescence spectra of MMgP2O7(M=Ca,Sr,Ba):Eu3+ phosphors showed a strong excitation peak at around 400 nm,which was coupled with the characteristic emission(350-400 nm) from UV light-emitting diode.The CaMgP2O7:Eu3+,SrMgP2O7:Eu3+ and BaMgP2O7:Eu3+ phosphors showed strong emission bands peaking at 612,593 and 587 nm,respectively.Due to the difference of the ion sizes between Ba2+(0.142 nm),Sr2+(0.126 nm),Ca2+(0.112 nm),Mg2+(0.072 nm) and Eu3+(0.107 nm),Eu3+ ions were expected to substitute for different sites in CaMgP2O7,SrMgP2O7 and BaMgP2O7 lattice.  相似文献   

3.
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.  相似文献   

4.
The photoluminescence of Dy^3 doped and Dy^3 , Ce3 codoped in Ba3La(BO3)3 were studied. The dependence of the charge-to-radius ratio (z/r) for RE^3 (RE=La,Ce), the Ce^3 , Dy^3 content on the emission intensity and the yellow to blue intensity ratio (Y/B) of Dy^3 were investigated too. The results obtained indicate that Ce^3 can sensitize the luminescence of Dy^3 .The optimum concentration of Dy^3 in Ba3La(BO3)3 is XDy=0.06. According to the dependence of the concentration of Dy^3 in Ba3La(BO3)3 under the excitation of 350 nm, it is confirmed that the mechanism of concentration selfquenching of Dy^3 4F9/2→6H15/2, ^6H13/2 transition is electric dipole-quadrupole interaction.  相似文献   

5.
The novel phosphors of La 2 MoO 6 activated with the trivalent rare earth Ln 3+ (Ln=Eu, Sm, Dy, Pr, Tb) ions were synthesized by solid state reactions at high temperature in air atmosphere, and their phase impurities and luminescent properties were studied. The photoluminescence (PL) excitation and emission spectra, and decay curves were employed to study their luminescence properties. The lifetimes of the characteristic emissions from Ln 3+ ions were in the order of millisecond except Pr 3+ ions. (LaEu 1-x ) 2 MoO 6 was a promising phosphor for practical application and the optimum concentration was x=0.075. The concentration quenching mechanism of Eu 3+ was also discussed by theoretical fitting using Burshtein model.  相似文献   

6.
Phosphors of BaLiF3 doped with Eu or/and Ce were solvothermally prepared at 200°C for 5d and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). The excitation and emission spectra of the rare earth ions doped BaLiF3 were measured by fluorescence spectroscopy and the effects of Ce3+ ions on the luminescence of Eu2+ ions were investigated. In the codoped Eu2+ and Ce3+ system, the emission intensity of Eu2+ ion gradually increased with the Ce3+ concentration increasing, and the enhancement of Eu2+ fluorescence was due to efficient energy transfer from Ce3+ to Eu2+ in the host.  相似文献   

7.
The photoluminescence(PL) properties of Ca4YO(BO3)3 doped with Bi3+,Dy3+,and Pr3+ ions were investigated.These compounds were prepared using a typical solid-state reaction.The excitation and emission spectra were measured using a spectrofluorometer.For Ca4YO(BO3)3:Bi3+,the excitation spectrum showed the bands at about 228,309,and 370 nm which correspond to the 1S0→1P1 transition and the 1S0→3P1 transition of Bi3+ ions.The emission band at 390 nm corresponded to the 3P1→1S0 transition of Bi3+ ions.For Ca4YO(BO3)3:Bi3+,Dy3+,energy transfer occurred from Bi3+ to Dy3+ somewhat.In Ca4YO(BO3)3:Bi3+,Dy3+,Pr3+,the excitation band at 367 nm was enhanced obviously due to the energy migration from Bi3+ to Pr3+,which converted efficiently the emission of semiconductor InGaN based light-emitting diode(LED).Therefore,the emission of Dy3+ ions was enhanced due to the energy migration from the process of Bi3+→Pr3+→Dy3+.It resulted in the good color rendering.  相似文献   

8.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

9.
M0.2Ca0.8TiO3∶Pr3 (M=Mg2 , Sr2 , Ba2 , Zn2 ) long persistence red phosphors were prepared by solid state reaction. The influence of the partially replacing Ca2 in CaTiO3 with Mg2 , Sr2 , Ba2 , Zn2 on the excitation spectra, the emission spectra and the long persistence properties were studied. The results suggest that certain quantity of Mg2 , Sr2 , Ba2 , Zn2 which partially replace Ca2 can enhance the luminescent intensity and prolong the afterglow persistence of the samples. The intensity of Mg0.2Ca0.8TiO3∶Pr3 is above all of the samples. Take Mg0.2Ca0.8TiO3∶Pr3 as the basic sample, the influence of Pr3 concentrations(C(Pr3 )) on the long afterglow properties were also studied. The results suggest that when the C(Pr3 ) is 0.10%(mol fraction) the intensity of the sample is the highest. The excitation spectra of all these samples show broad band spectra ranging from 300~500 nm peaking at about 342 nm. The emission spectra also exhibit a broad band peaking at 613 nm(CaTiO3∶Pr3 is 612 nm). XRD research indicates that the crystalline phases change due to the replacement of divalent metal ions.The research on the thermoluminescence spectra of Mg0.2Ca0.8TiO3∶Pr3 indicates that the peak is at 107.35 ℃ and the depth of the trap energy is about 0.852 eV.  相似文献   

10.
SrGdGa3O7:RE(RE=Ce^3 ,Pr^3 ,Tb^3 ) were prepared by traditional solid-state reaction and their luminescence properties in the range of VUV-Vis were investigated. The two broad bands situated at about 177 and 217nm in excitation spectra are attributed to the host lattices absorption, and they have no considerable change when doped different rare earth ions. The f-d transitions of Pr^3 and Tb^3 calculated by the formula gathered by Dorenbos were compared to the experimental results. The excitation spectra also show the sharp Gd^3 excitation line at about 274 nm pointing to an efficient energy transfer from Gd^3 to Pr^3 and Tb^3 . All of the emission spectra present the characteristic emissions of rare earth ions when excited by VUV and UV.  相似文献   

11.
M0.2Ca0.8TiO3 : Pr^3 (M = Mg^2 , Sr^2 , Ba^2 , Zn^2 ) long persistence red phosphors were prepared by solid state reaction. The influence of the partially replacing Ca^2 in CaTiO3 with Mg^2 , Sr^2 , Ba^2 , Zn^2 on the excitation spectra, the emission spectra and the long persistence properties were studied. The results suggest that certain quantity of Mg^2 , Sr^2 , Ba^2 , Zn^2 which partially replace Ca^2 can enhance the luminescent intensity and prolong the afterglow persistence of the samples. The intensity of Mg0.2Ca0.8TiO3: Pr^3 is above all of the samples. Take Mg0.2Ca0.8TiO3:Pr^3 as the basic sample, the influence of Pr^3 concentrations (C (Pr^3 )) on the long afterglow properties were also studied.The results suggest that when the C (Pr^3 ) is 0.10% (tool fraction) the intensity of the sample is the highest. The excitation spectra of all these samples show broad band spectra ranging from 300 - 500 nm peaking at about 342 nm. The emission spectra also exhibit a broad band peaking at 613 nm (CaTiO3: Pr^3 is 612 nm). XRD research indicates that the crystalline phases change due to the replacement of divalent metal ions. The research on the thermoluminescence spectra of Mg0.2Ca0.8TiO3:Pr^3 indicates that the peak is at 107.35℃ and the depth of the trap energy is about 0.852 eV.  相似文献   

12.
Sr2Mg Si2O7:Tb3+,Ce3+ phosphors were synthesized by solid-state reaction and placed in a muffle furnace in a reducing atmosphere at 1300 oC for 3 h. Photoluminescence properties and energy transfer were investigated. The Ce3+/Tb3+ energy transfer was thoroughly investigated by their emission/excitation spectra and photoluminescence lifetime, there was shortened lifetime of Ce3+(from 51.31 to 50.06 ns) which could support evidence of energy transfer from Ce3+ to Tb3+ in the host. The varied emitted color of Sr1.97–yMg Si2O7:0.03Tb3+,y Ce3+ phosphors could be achieved by altering the concentration of Ce3+, the chromaticity coordinates(x, y) varied from(0.225, 0.376) to(0.172, 0.231). In Sr1.96 Mg Si2O7:0.03Tb3+,0.01 Ce3+ phosphors, the results indicated that Sr2 Mg Si2O7:Tb3+,Ce3+ might be useful as tunable phosphors for ultraviolet white-light-emitting diodes.  相似文献   

13.
The luminophors of four kinds of alkaline earth meta-silicates doped with Eu~3 and/or Bi~(3 )ion(s)weresynthesized and the luminescence properties of Bi~(3 )and Eu~(3 )ions were studied.The regularities that Me(Ⅱ)ions affect the luminescence of Eu~(3 )ion sensitized by Bi~(3 )ion were investigated.The optimum composition andsynthesis condition were obtained.The absorption and emission peak are situated at 283 and 353nm with theoptimum concentration 0.02 mol of Bi~(3 )in CaSiO_3:Bi.In CaSiO_3:Bi,the optimum concentration of Bi~(3 )is0.007 mol and that of Eu~(3 )is 0.040 mol.For all of the alkaline earth ions concerned in MeSiO_3:Eu,Bi,theBi~(3 )can sensitize the Eu~(3 )and the Me(Ⅱ)ions in host and make a great difference in the adsorption hand ofBi~(3 )ion.by exciting Bi~(3 )ion,the emissions are from both Eu~(3 )and Bi~(3 )ions and the best sensitization effectis achieved when Me(Ⅱ)is Sr.  相似文献   

14.
A series of red phosphors M3BO6:Eu3+(M=La,Y) were synthesized at 1150 oC by conventional solid state reaction method and their luminescent properties were investigated.Structural characterization of the luminescent materials was carried out with X-ray powder diffraction(XRD) analysis.Photoluminescence measurements indicated that the La3BO6:Eu3+ phosphor exhibited bright red emission centered at about 612 nm 626 nm under UV excited.La3BO6:Eu3+ phosphor had better luminescent intensity than Y3BO6:Eu3+ phosphors under the same excitation and measuring conditions.It was shown that the 0.08 mol.% Eu3+ ions in La3BO6:Eu3+ phosphors was optimal.The color parameter indicated that La3BO6:Eu3+ phosphor was a preferable red phosphor for white LED.  相似文献   

15.
The crystal growth, crystal defect, thermal properties and luminescence properties of Nd3+:Ca2.85Gd0.1(VO4)2 were investigated. Nd3+:Ca2.85Gd0.1(VO4)2 crystal grown by Czochraski method was green colored, and was not transparent, which was possibly due to residual impurities in V2O5, or due to the lack of oxygen in the growth process. And the Nd3+:Ca2.85Gd0.1(VO4)2 crystal had the existence of 180° do-mains. However, the annealing method could effectively decrease the crystal defect and greatly improve the quality of crystal. The average thermal expansion coefficients calculated were α⊥c=9.5767×10-6 K-1, α∥c=10.7647×10-6 K-1, respectively. The specific heat of Ca2.85Gd0.1(VO4)2 was 0.401 J/(g·K) at 330 K. The polarized absorption spectra and the polarized fluorescence spectra of Ca2.85Gd0.1(VO4)2 were measured at 330 K. Based on the Judd-Ofelt theory, the intensity parameter Ωλ (λ=2, 4, and 6), the radiation transition probabilities τrad, the stimulated-emission cross section σp in Nd3+:Ca2.85Gd0.1(VO4)2 crystal were calculated.  相似文献   

16.
Undoped and rare earth ions(Eu3+, Ce3+, Tb3+) doped β-Sr HPO4 nanomaterials were successfully prepared by a facile hydrothermal method. The crystal structure, morphology and luminescent properties were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), photoluminescence(PL) spectra and luminescence decay curves. The results indicated that the undoped and rare earth ions doped Sr HPO4 nanomaterials(the doping concentration was not above 7%) were well crystallized, with the same crystal structure(β-Sr HPO4). Nevertheless, the doping of rare earth ions could lead to the changing of morphology from nanoflakes to nanocrystals. Under the excitation of UV light, rare earth ions(Eu3+, Ce3+, Tb3+) doped β-Sr HPO4 nanocrystals exhibited the characteristic emission of Eu3+, Ce3+ and Tb3+ ions, respectively. The luminescence decay curves of β-Sr HPO4:Eu3+ and β-Sr HPO4:Ce3+,Tb3+ nanocrystals conformed to the double exponential fluorescence decay, and the average lifetimes were 1.14 and 4.12 ms, respectively. The luminescence decay curve of β-Sr HPO4:Ce3+ was fitted into a single exponential function, and the lifetime was about 0.78 ns.  相似文献   

17.
Synthesis and Luminescence of Complexes EuxY1-x(phen)L3   总被引:5,自引:0,他引:5  
A series of binuclear complexes with different molar ratio of europium to yttrium with cinnamic acid and o-phenanthroline were synthesized in anhydrous alcohol. Elemental analysis shows that the composition of the complexes areEuxY1-x(phen)L3(L: C6H5CH=CHCOO, x = 1.0, 0.7, 0.5, 0.3 and 0.1). The IR absorption spectra indicate that cinnamate is coordinated to the rare earth ions and chemical bonds are formed between rare earth ions and nitrogen atoms of o-phenanthroline. Fluorescent spectra show that the emission of Eu^3 ion can be greatly enhanced if some of europium ions in the complexes are substituted by yttrium ions.  相似文献   

18.
A simple co-precipitation approach taking place between Ln3+, Sr2+ cations and F– anions, led to the formation of nanocrystalline Eu3+ doped Sr2LnF7(Ln=La and Gd) complex fluorides. The reaction was carried out in the presence of polyethylene glycol, PEG 6000 as a surfactant/surface modifier, providing small size and homogeneity of the products. The synthesized compounds were composed of small nanoparticles with an average size of 15 nm. All obtained Eu3+ doped compounds exhibited an intensive red luminescence. In the case of gadolinium based compounds, the energy transfer phenomena could be observed from Gd3+ ions to Eu3+ ions. In order to study the structure and morphology of the synthesized fluorides, powder X-ray diffraction(XRD) and transmission electron microscopy(TEM) measurements were performed. Also FT-IR spectra of the products were recorded, revealing the presence of PEG molecules on the nanoparticles surface. A spectrofluorometry technique was applied to examine optical properties of the synthesized nanoparticles. Excitation and emission spectra as well as luminescence decay curves were measured and analysed. The performed analysis revealed a red luminescence, typical for the Eu3+ ion situated in the inorganic, highly symmetric matrix. Concentration quenching phenomena and lifetimes shortening, together with an increasing of the Eu3+ doping level, were observed and discussed. Judd-Ofelt analysis was also performed for all doped samples, in order to support the registered spectroscopic data and examine in details structural and optoelectronic properties of the synthesized nanomaterials.  相似文献   

19.
The luminescent properties of Sr2.97MgSi2O8:Eu2+0.01 phosphors were investigated with different Ln3+0.02(Ln3+:Dy3+,Er3+,Ho3+) co-dopants. The co-dopants had no influence on both the structure of the lattice and the position of the emission peak. However, the afterglow properties of samples were enhanced with different co-dopants. The afterglow duration of the Dy3+ co-doped sample was longer than that of the others. Furthermore, the co-doping samples had stronger thermoluminescence (TL) intensity and therefore longer afterglow duration. At last, the self-reduction of Eu3+→Eu2+ was observed in an silicate compound of Sr3-xMgSi2O8:xEu phosphor in air condition. This is the first time to show a blue long afterglow phosphor synthesized avoiding reducing atmosphere.  相似文献   

20.
Long afterglow phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) were synthesized by microemulsion method, and their crystal structure and luminescent properties were compared and investigated. XRD patterns of samples indicate that phosphors CaAl2O4:Eu^2+, Dy^3+ and SrAl2O4 : Eu^2+, Dy^3+ are with monoelinie crystal structure and phosphor BaAl2O4:Eu^2+ , Dy^3+ is with hexagonal crystal structure. The wide range of excitation spectrum of phosphors MAl2O4: Eu^2 + , Dy^3+ (M = Ca,Sr, Ba) indicates that the luminescent materials can he excited by light from ultraviolet ray to visible light and the maximum emission wavelength of phosphors MAl2O4:Eu^2+ , Dy^3+ (M = Ca, Sr, Ba) is found mainly at λem of 440 nm (M = Ca), 520 nm (M = Sr) and 496 nm (M = Ba) respectively, the corresponding colors of emission light are blue, green and eyna-green respectively. The afterglow decay tendency of phosphors can he summarized as three processes: initial rapid decay, intermediate transitional decay and very long slow decay. Afterglow decay curves coincide with formula I = At^ - n, and the sequence of afterglow intensity and time is Sr 〉 Ca 〉 Ba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号