首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
为了获取不同约束方式和强度下HMX基压装含铝炸药慢速烤燃响应特性,以典型超音速钻地/侵爆战斗部为背景,设计了装药长径比为5∶1的缩比烤燃弹;开展了无约束和不同约束强度下HMX基压装含铝炸药慢速烤燃实验;获取了无约束条件下HMX基压装含铝炸药的反应过程,以及不同壳体壁厚(4、10、16和20mm)与端盖螺纹长度(10、12和14mm)时装药反应烈度的变化规律。结果表明,慢速烤燃条件下该HMX基压装含铝炸药反应包括生成气体、端面燃烧、火焰熄灭3个阶段;烤燃弹约束强度影响装药烤燃时间和点火温度,进而影响烤燃弹内部反应压力增长,最终导致不同的反应等级;当螺纹长度(L)为14mm时,壳体厚度(δ)由4mm增加至20mm,反应等级由爆燃发展为爆炸而后降低为燃烧;当壳体壁厚(δ)为10mm时,螺纹连接长度(L)由10mm增加至14mm,烤燃弹反应等级由燃烧转变为爆炸;当壳体壁厚(δ)与等效壳体壁厚(δe)相当时,烤燃弹约束强度较为均匀,有利于反应压力的不断增长,最终导致烤燃弹发生更为剧烈的爆炸反应。  相似文献   

2.
压装高能炸药的燃烧转爆轰实验研究   总被引:2,自引:0,他引:2  
用电探针和压力传感器测定了质量分数为95%压装高能炸药(密度为1.86 g/cm~3)的燃烧转爆轰特性.研究了点火药量和约束条件对压装高能炸药燃烧转爆轰过程的影响.结果表明,压装高能炸药难以发生燃烧转爆轰,点火药药量从1.5 g增至3.0 g时,炸药的反应强度有所提高,但对燃烧转爆轰的影响较小.在强约束条件下,该压装炸药能基本实现燃烧转爆轰,爆轰诱导距离约为545 mm.  相似文献   

3.
发射药燃烧转爆轰的试验研究   总被引:2,自引:0,他引:2  
为研究发射药燃烧转爆轰特性及其影响因素,采用联合国危险分级试验中燃烧转爆轰试验方法对单、双、三基以及不同药型的发射药进行燃烧转爆轰试验。结果表明,在管厚4mm弱约束条件下,只有三基小粒发射药发生爆轰,在管厚9mm强约束条件下,6/7双基药、6/7叠氮发射药、6/7三基药以及三基小粒药发生爆轰。发射药配方中添加硝化甘油(NG)、叠氮硝胺(DA)和黑索金(RDX)以及减小药型尺寸,可增强发射药的燃烧转爆轰能力,同时,提高壳体约束强度更易发生燃烧转爆轰。  相似文献   

4.
采用GJB772A-97方法704.2锰铜压力传感器法和GJB772A-97方法702.1电测法测试了6种2,4-二硝基苯甲醚(DNAN)基熔铸复合炸药的爆速和爆压及空中爆炸冲击波参数,通过计算得到配方中铝粉的反应度λ和反应区间长度L。结果表明,DNAN基熔铸复合炸药空中爆炸威力(Δp·I)与反应度和反应区间的乘积(λ·L)的大小关系一致。λ·L值越大,其爆炸威力越大。  相似文献   

5.
为了对常用组分构成的炸药燃烧转爆轰(DDT)过程进行预估,采用熔铸工艺制备了P1(40%TNT/60%RDX)、P2(40%DNTF/40%HMX/10%TATB/5%Al/5%添加剂)、P3(25%DNTF/40%AP/30%Al/5%添加剂)3种混合炸药,采用浇注工艺制备了P4(30%RDX/30%AP/30%Al/10%添加剂)炸药,用同轴电离探针测试技术对4种炸药进行了DDT试验,从DDT管的破碎状态、DDT过程中波阵面传播速度及爆轰转变距离分析了DDT响应特征。结果表明,炸药P1、P2、P3发生了DDT,爆轰转变距离范围分别为750~825mm、375~450mm、675~750mm,炸药P4未发生DDT;炸药P2的DDT管破裂最剧烈,炸药P3次之,炸药P1最小,表明DDT管的破碎程度与炸药的爆压正相关;炸药配方中含有热分解温度接近的组分,使热分解放热量快速叠加,促使燃烧状态失稳,提高燃烧向爆轰的转变;浇注成型工艺由于存在惰性添加剂对炸药组分的隔离包覆和吸热作用,降低了炸药由燃烧向爆轰转变的可能性。  相似文献   

6.
密度对压装B炸药燃烧转爆轰性能的影响   总被引:2,自引:3,他引:2  
以常规武器中常用的B炸药为研究对象,采用电探针及压力传感器测量技术,在相同的实验条件下分别对3种不同密度固体压装B炸药(m(TNT);m(RDX)=40:60)的燃烧转爆轰性能进行了实验研究。B炸药的密度范围为1.597~1.681g/cm^3。实验结果表明,在相同的约束条件下,炸药密度对其燃烧转爆轰(DDT)性能有较大影响。不同密度炸药的DDT性能不同。较低密度的炸药更容易发生DDT现象,固体压装B炸药存在一个燃烧转爆轰的临界密度值。在较强的约束条件下(45号钢管,内径20mm,外径64mm,长500mm),密度为1.597g/cm^3的B炸药发生了DDT现象,诱导爆轰距离为295~310mm。  相似文献   

7.
为研究几何尺寸对DNAN基熔铸炸药热反应规律的影响,自行设计了慢烤试验装置,采用多点测温慢烤试验方法,分别在1°C/min和3.3°C/h两种升温速率下进行了4种尺寸(Φ19mm×19mm、Φ19mm×38mm、Φ19mm×76mm、Φ30mm×30mm)弹药的慢烤试验,建立了炸药慢烤试验计算模型,采用Fluent软件计算了升温速率3.3℃/h下一维、二维方式几何尺寸增加时烤燃弹的响应情况。结果表明,几何尺寸和升温速率共同影响烤燃弹的响应特性;对相同烤燃弹,在升温速率3.3℃/h下加热响应等级比升温速率1℃/min下的更剧烈;在升温速率3.3℃/h下,烤燃弹点火位置均位于几何中心,并且随着几何尺寸的增加,点火时刻烤燃弹的外壁温度逐渐降低,烤燃弹存在发生点火反应的最低环境温度为174.74℃,且当药柱长径比为4时,点火时刻外壁温度随着药柱直径的增加呈指数衰减趋势。  相似文献   

8.
含铝炸药圆筒试验与数值模拟   总被引:3,自引:0,他引:3  
采用圆筒试验研究了两种直径(50 mm和100 mm)含铝炸药的作功能力,获得了圆筒壁膨胀位移与时间的关系.利用有限元动力学程序LS-DYNA,采用Lee-Tarver点火增长三项式模型对两种含铝炸药的圆筒实验进行了数值模拟.通过与实验结果相比较,得到了含铝炸药的爆轰产物JWL状态方程和反应速率函数的参数,较好地再现了两种含铝炸药圆筒试验结果的参数.Lee-Tarver点火增长三项式模型能够较好地反映含铝炸药后期能量释放驱动圆筒壁膨胀的过程.  相似文献   

9.
压装PBX炸药DDT管实验初始反应演化过程分析   总被引:1,自引:0,他引:1  
在DDT管中采用惰性模拟材料研究电点火头和黑火药产生的初始压力对惰性模拟材料点火端面的影响;采用高速摄像机记录了DDT管内HMX基压装PBX炸药的燃烧发光过程;分析了压装PBX炸药DDT管实验初始反应演化过程。结果表明,电点火头和黑火药产生的初始压力会引起邻近脆性炸药端面裂纹形成和局部破坏,炸药燃烧的火焰沿炸药基体裂纹和炸药与管壁之间的缝隙中传播,压装PBX炸药初始反应演化与缝隙对流燃烧过程密切相关。  相似文献   

10.
为了改善铝粉在CL-20基含铝炸药中的反应动力学特性,利用溶剂-非溶剂法制备了CL-20/Al复合颗粒,实现了CL-20与Al在微结构上的紧密结合,通过直接法制备了由CL-20/Al复合颗粒构成的组分质量分数为85%CL-20/10%Al/5%黏结剂的含铝炸药,并与常规法制备的相同组成的CL-20基含铝炸药进行了机械感度、爆热、爆炸罐试验和圆筒试验等结果的对比。结果表明,CL-20/Al复合颗粒会使含铝炸药的撞击感度略有提高,而摩擦感度不变,但总体上对机械感度影响不大;通过CL-20/Al在微结构上的复合,缩短了Al粉与爆轰产物之间的扩散距离,可以显著改善Al粉的反应动力学性能,提高Al粉在含铝炸药爆炸过程中的反应完全性,促使部分Al粉在爆轰区内参与反应,相比于常规法制备的相同组成的含铝炸药,可使含铝炸药的爆热从6787J/g提高至6930J/g,爆炸罐内爆炸场最高温度从544.3℃提高至661.2℃,格尼系数由2.88mm/μs提高至3.10mm/μs。  相似文献   

11.
破碎燃烧高能气体压裂装药损伤对DDT行为的影响   总被引:5,自引:2,他引:5  
概述了以高氯酸铵为基的丁羟复合推进剂(CCCF复合推进剂)模拟损伤试验及损伤状态对其燃烧稳定性和燃烧转爆轰特性(DDT行为)的影响。分析了装药在不同损伤状态下的密闭爆发器实验结果。发现CCCF复合推进剂在无外部约束条件下意外点火,通常不产生DDT行为。但在油气井中可能产生DDT行为。  相似文献   

12.
为减少熔铸炸药的装药缺陷、提高装药密度,设计制造了一套高压熔铸成型系统,采用与典型TNT基和DNAN基熔铸炸药物理性质相近的惰性代料开展高压熔铸成型试验,研究加载压力、保压时间和加压时机对代料药柱相对密度和装药质量的影响。结果表明,高压熔铸成型过程中,除液相补缩作用被增强外,还存在糊状补缩和固相补缩作用,从而显著减少药柱的装药缺陷,提高相对密度;加载压力应在药柱的三轴压缩屈服强度和三轴压缩抗压强度之间;保压时间应超过药柱的凝固耗时;加压时机的温度应保证模具内壁尚未出现凝固层;加载压力25.45MPa、保压时间60min、加压时机80℃工况下制得的药柱无装药缺陷,相对密度高达99.90%。  相似文献   

13.
通过爆炸光辐射特性试验研究,获取了含铝炸药装药在不同反应阶段的可见光、红外光时程曲线,计算了不同波段光辐射的能量利用率;基于含铝炸药的爆炸能量输出结构,分析了含铝炸药爆炸光辐射能量输出特性和激发特性规律。结果表明,可见光、中波红外和长波红外3个频段的光辐射强度分别在含铝炸药爆炸爆轰反应阶段、无氧燃烧反应阶段和有氧燃烧反应阶段达到最大峰值,与不同阶段的反应机制和释能特性吻合;含铝炸药常规爆炸的光辐射在试验工况测量波段的能量利用率为5.91%,与核爆炸模式的光辐射转化率存在数量级上的差异,但通过优化炸药配方设计和复合装药结构等技术途径仍可能有较大的提升空间,可为光电对抗提供新型技术途径。  相似文献   

14.
塔里木盆地超深井射孔-改造-测试联作管柱易出现被卡现象,针对该现象开展了管柱被卡原因分析。针对位于塔里木盆地的一口典型定向井,基于射孔爆轰影响、固井质量分析和油嘴流量分析,开展了套管变形机理研究。研究得出:射孔爆轰会造成射孔段井筒压力剧烈波动,易导致射孔段以及附近套管强度降低,从而产生变形;固井质量不佳会降低套管的抗内压能力;油嘴超过5 mm,会存在抽汲作用导致套管变形。基于此,提出了选用小炸药量射孔弹、降低孔密、使用小尺寸油嘴、采用壁厚较厚与钢级较高的套管等预防措施,可为射孔测试联作下套管变形安全控制提供一定指导作用,保障管柱安全。  相似文献   

15.
爆轰火焰在管道阻火器内的传播与淬熄特性   总被引:4,自引:1,他引:3       下载免费PDF全文
孙少辰  毕明树  刘刚  邓进军 《化工学报》2016,67(5):2176-2184
在水平封闭的直管中,采用自主研制的阻爆实验系统(包括传感器系统、配气系统、数据采集系统、点火系统等)对不同活性预混气体爆轰火焰在波纹管道阻火器内的传播与淬熄过程进行了实验研究。结果显示当可燃气体接近当量浓度时(丙烷4.2%、乙烯6.6%、氢气28.5%,均为体积分数),预混气体从点燃到火焰淬熄过程历时非常短,总体可分为4个阶段,缓慢燃烧阶段、快速燃烧阶段、加速燃烧阶段和超压振荡阶段。丙烷-空气、乙烯-空气预混气体在D=80 mm的管道阻火器中,爆炸压力峰值较高。当管道直径增加至400 mm时,爆炸压力峰值逐渐降低,其中乙烯-空气预混气体的爆炸压力峰值仅为3 MPa左右;氢气-空气预混气体的爆炸压力峰值随管径的增加呈递增趋势。对爆轰速度的研究结果表明,丙烷-空气、乙烯-空气预混气体爆轰速度数值相差不大,丙烷-空气预混气体甚至稍高些;而氢气-空气的爆轰速度数值较高。而且随着管径的增加,管壁热损失增大及其阻力因素等原因影响使预混气体爆轰速度趋向平稳。最后,从经典传热学理论出发,推导出了阻火单元厚度与爆轰火焰速度之间的关系。并结合实验数据,提出了爆轰安全阻火速度的计算方法,为工业装置阻火器的设计和选型提供更为准确的参考依据。  相似文献   

16.
采用燃烧转爆轰(DDT)管法研究了p(BAMO-AMMO)热塑性推进剂主要固体组分RDX和AP含量、AP粒度及级配等对其燃烧转爆轰响应规律的影响。结果表明,在相同试验条件下,含质量分数65%AP的p(BAMOAMMO)推进剂发生了燃烧转爆轰响应,而含等量RDX的p(BAMO-AMMO)推进剂仅发生了燃烧反应。当RDX质量分数从65%增加到85%时,样品由燃烧反应变为燃烧转爆轰反应。含等量细粒度(d50=1.0μm)AP的推进剂发生燃烧转爆轰的倾向较含粗粒度AP(d50=105μm)的低。当粗、细AP以质量比为10∶3级配时,p(BAMOAMMO)推进剂未发生燃烧转爆轰反应。  相似文献   

17.
在水平封闭的直管中,采用自主研制的阻爆实验系统(包括传感器系统、配气系统、数据采集系统、点火系统等)对不同活性预混气体爆轰火焰在波纹管道阻火器内的传播与淬熄过程进行了实验研究。结果显示当可燃气体接近当量浓度时(丙烷4.2%、乙烯6.6%、氢气28.5%,均为体积分数),预混气体从点燃到火焰淬熄过程历时非常短,总体可分为4个阶段,缓慢燃烧阶段、快速燃烧阶段、加速燃烧阶段和超压振荡阶段。丙烷-空气、乙烯-空气预混气体在D=80 mm的管道阻火器中,爆炸压力峰值较高。当管道直径增加至400 mm时,爆炸压力峰值逐渐降低,其中乙烯-空气预混气体的爆炸压力峰值仅为3 MPa左右;氢气-空气预混气体的爆炸压力峰值随管径的增加呈递增趋势。对爆轰速度的研究结果表明,丙烷-空气、乙烯-空气预混气体爆轰速度数值相差不大,丙烷-空气预混气体甚至稍高些;而氢气-空气的爆轰速度数值较高。而且随着管径的增加,管壁热损失增大及其阻力因素等原因影响使预混气体爆轰速度趋向平稳。最后,从经典传热学理论出发,推导出了阻火单元厚度与爆轰火焰速度之间的关系。并结合实验数据,提出了爆轰安全阻火速度的计算方法,为工业装置阻火器的设计和选型提供更为准确的参考依据。  相似文献   

18.
选用制式发射药进行了子弹撞击、破片撞击和空心装药射流撞击试验,研究了钢和可燃药筒的强、弱两种约束条件对发射药在机械冲击作用下敏感特性的影响。结果表明,在子弹撞击和破片撞击的高速机械冲击作用下,约束条件对发射装药的敏感特性响应结果影响明显;强约束条件下发射装药发生燃烧或爆炸响应,弱约束条件下发射装药无响应或发生燃烧响应,在空心装药射流的最强机械冲击作用下,约束条件对发射装药的敏感特性响应结果无明显影响,弱、强约束条件下发射装药的响应结果一致;在发射装药壳体上设计容易泄压的薄弱环节有利于降低发射装药受到意外机械冲击作用时的反应剧烈程度。  相似文献   

19.
为探索等离子体对三基药的作用机理,用X射线能谱仪(EDS)和扫描电子显微镜(SEM)分析了三基药等离子体点火试验后的火药试样。结果表明,等离子体与三基药作用时首先发生局部物理化学反应,使其表层产生许多孔洞,改变了常规点火方式中火药表层先发生熔化的模式;同时等离子体射流的冲击作用使得火药表层产生了缝隙,增加了点传火通道,可相应增大点火和燃烧面积。  相似文献   

20.
1 硝铵炸药的爆炸机理硝铵所以能作为炸药的原料 ,主要是因结构的特殊 ,决定了具有强烈的爆炸性。硝铵的结构可用下式表示 :NH4 O NOO在硝铵的结构中含有两个价态不同的氮原子 ,铵基中的氮为 -3价 ,而硝酸根中的氮为 5价。这两个价态不一的氮原子 ,在条件合适的情况下 ,自身就会进行电子转移 ,发生剧烈的氧化-还原反应 ,最终导致燃烧爆炸 ,分解反应如下 :2 NH4 NO3  2 N2 O2 4H2 O↑ 2 3 8k J硝铵发生分解反应有如下特点。(1 )爆炸反应速度极快。例如 1 0 0 0 g硝铵炸药 ,完成爆炸反应 ,仅需十万分之三秒。而产生的功率竟高…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号