首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A set of 30 maceral concentrates consisting of 5 exinites (sporinites), 14 vitrinites and 11 inertinites (fusinites and semifusinites) was analyzed by Curie-point pyrolysis mass spectrometry in combination with computerized multivariate statistical analysis techniques. Seventeen samples, representing sink/flotation concentrates of 7 different coals, were obtained through the British National Coal Board, whereas the remaining samples represent cesium-chloride density-gradient centrifugation fractions of two different U.S. coals prepared at the University of Utah.It is found that vitrinites, (semi)fusinites and, to some extent, sporinites show qualitatively similar rank-related changes, such as a decrease in dihydroxybenzene signals and an increase in napthalene signals with increasing rank. In fact, the overall pyrolysis MS patterns of inertinities show a close similarity to those of vitrinites of corresponding carbon content (as obtained from higher rank coals).Notwithstanding these similarities, however, the presence of basic differences in maceral structure is indicated by relatively minor but characteristic peak series in the liptinite (sporinite) as well as inertinite samples. Whereas inertinite spectra show relatively pronounced peak series at the high mass end of the spectrum which can be tentatively identified as representative of polynuclear aromatic compounds, sporinites are characterized by series of branched aliphatic and/or alicyclic polyenic hydrocarbons, possibly representing isoprenoids and related biomarker compounds.  相似文献   

2.
n-Alkanes in the soluble organic matter extracted from a series of vitrinite and sporinite concentrates have been analysed by gas chromatography. The macerals were isolated from coals ranging in rank from 77.1% to 86.6% carbon (vitrinite: dry, ash-free), and yields of n-alkanes ranged from 10 to 580 ppm for vitrinites and from 20 to 970 ppm for sporinites. The maximum yields were found at a rank of 85.4% C from vitrinites and 86.6% C from sporinites.Distribution maxima of the n-alkanes, as shown by gas chromatography, range from C27 and C29 at lower ranks to as low as C16 at higher ranks. The distributions also show a progressive decrease in the preference of odd-carbon-number homologues with increasing rank. Virtually smooth distributions were attained in high-volatile bituminous A coals. Quantitative data show that the loss of the odd-carbon-number preference occurred, for the most part, while individual long-chain homologues increased in concentration.There is a progressive increase in the amounts of shorter-chain n-alkanes with increasing rank. It is suggested that sequential processes may have occurred whereby the rate of formation of long-chain n-alkanes in high-volatile bituminous A rank macerals becomes slower than their rate of subsequent fragmentation to shorter chain lengths. Consequently, assuming derivation from the insoluble maceral matrices, the chain-length distributions of parent n-alkyl structures within the insoluble material may retain characteristics pertaining more to the nature of the source organic matter at the time of deposition than do the extractable n-alkane patterns, especially at higher ranks.  相似文献   

3.
Rank evaluation of South Brazilian Gondwana coals according to the American (American Society for Testing and Materials, ASTM) and German (Deutsche Industrie Normen, DIN) standard specifications or on the basis of Alpern's Universal Classification has too often led to conflicting results.When any attempt is made to determine the rank of Brazilian coals by using methods established for the Northern Hemisphere coals, two sorts of difficulties arise: namely, (1) the reflectence measurements do not indicate the real degree of coalification of the organic matter because of the liptinitic impregnations of the vitrinites, and (2) random reflectance values (Rran, moisture, volatile-matter and carbon contents as well as the calorific value do not correlate when plotted on the ASTM and DIN classification schemes.In addition, when rank determinations are carried out by using fluorescence measurements and geochemical analyses the results are at variance in relation to those determined by the conventional chemical and physical parameters.It is suggested that the rank evaluation of South Brazilian coals is far more meaningful if carried out by reflectance measurements on vitrinites along with fluorescence measurements on sporinites, alginites and coal extracts.  相似文献   

4.
The Lower Carboniferous coals which have been discovered and explored in the western Donbas since the war differ from those in the productive series of the old Donbas in age, petrographic composition and chemotechnological properties. From the Orel' river in the west to me Kal'mius river M the east the following have been recognized in the Lower Carboniferous: Visean coals of the sub-coal measures suite C2 1(b), Viséan coals of the Samarsk suite C3 1 (c), and Namurian coals of suites C4 1 and C5 1 (d and c). The Lower Carboniferous coals over most of the western Donbas have (for a given rank) a higher yield of volatiles and primary tar, heat of combustion, sintering capacity, and hydrogen content. The rank increases to the northeast and produces a zonal disposition of coals of industrial type. The degree of coalification also increases with burial of the seams in the southwest limb of the Dneprovsk-Donets basin at depth. The basic aspect of metarnorphisrn is regional.' The petrographic structure and composition of the C3 1 suite coals in the western Donbas are responsible for their high chemical potential, whereby these coals are of great interest in the production of metallurgical coke. — C. E. Sears.  相似文献   

5.
A series of eight Tertiary coal and carbonaceous shale samples with vitrinite reflectance values between 0.50 and 0.58% were extracted, fractionated and the saturated and aromatic hydrocarbons analysed for characteristic components by GC and GC-MS. Additionally, a microscopical study was undertaken in order to obtain a more precise picture of the samples under investigation.The saturated hydrocarbon fractions displayed the typical n-alkane distribution for coals of this rank, with CPI values between 2.0 and 3.1. Among the branched/cyclic compounds, pristane and α, β-homohopane were recognised as relevant components pointing to an oxic depositional environment. Detection of benzohopanes (C32–C35) in the aromatic hydrocarbon fractions suggests that bacteriohopanetetrol was a significant constituent of the coal biomass. Taking into consideration the Pr/Ph ratios, ash contents and microscopical characteristics of the samples, aspects of the possible degradation of hopanetetrol to homohopane are discussed. Resin-derived diterpenoids with the phyllocladane and kaurane skeleton were tentatively identified and, although minor compounds, they are interpreted to be a sign of the contribution of Podocarpaceae and Araucareaceae to the coal swamp.Aromatic compounds were dominated by alkylnaphthalene derivatives, presumably formed by C-ring cleavage and aromatisation of higher plant-derived pentacyclic triterpenois, which were main components in the high-boiling range of the fractions investigated. Angiosperms (especially Fagaceae) are postulated as source for these polycyclic compounds and, hence, for some of the polyalkylated aromatic bicyclics detected.  相似文献   

6.
运用电感耦合等离子体质谱和煤质分析等技术方法,对内蒙古胜利煤田0-1号钻孔揭露的早白垩世1、2和4号煤层(共20个煤分层,1个夹矸)进行了研究。结果显示,1、2号煤层的挥发分产率大于44%,透光率小于50%,煤类为褐煤;4号煤层挥发分产率42%,透光率53%,煤类为次烟煤(长焰煤);1、2号煤层灰分和硫含量较高,4号煤层灰分和硫含量较低。与世界煤微量元素含量平均值相比,1、2和4号煤层中Sb富集,V、Zr、Nb、Hf、W等元素轻微富集,其它微量元素的含量接近或低于世界煤含量的平均值。1、2和4号煤层中稀土元素和钇(REY)含量较低,根据上地壳标准值(La/Lu)N比值,所有煤分层均显示重稀土富集类型特征,而煤中泥岩夹矸则显示轻稀土富集类型特征。  相似文献   

7.
Petrographic and megascopic criteria have traditionally been used as the basis for the classification of torbanite and cannel coal. For this study, it was hypothesized that modern analytical organic geochemical and multivariate statistical techniques could provide an alternative approach. Towards this end, the demineralized residues of 14 torbanite (rich in Botryococcus-related alginite) and cannel (essentially, rich in organic groundmass and/or sporinite) coal samples were analyzed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Cluster analysis performed on the Py-GC/MS data clearly distinguished the torbanite from the cannel coal, demonstrating a consistency between the chemical properties and the petrographic composition. All the torbanite samples group into one cluster, their pyrolyzates having an overwhelming predominance of straight chain hydrocarbons, a characteristic typical of Botryococcus. The presence of the C9–C26 n-α,ω-alkadiene series is the key feature distinguishing the torbanites from the other samples. The cannel coals exhibit more chemical diversity, reflecting their greater variability in petrographic composition. The Breckinridge cannel, dominated by a highly aliphatic lamalginitic groundmass, chemically fits the torbanite category. The bituminitic groundmass-dominated cannel coals fall into a cannel sub-cluster, their pyrolyzates having a characteristic predominance of n-alk-1-enes and n-alkanes (particularly the long-chain homologues), with no detectable alkadienes. The vitrinitic groundmass-dominated Ohio Linton cannel and the sporinite-rich Canadian Melville Island cannel are readily distinguishable from the other cannels by the relatively abundant aromatic and phenolic compounds in their pyrolyzates. The internal distribution patterns of alkylaromatic and alkylphenolic isomers are shown to be less significant in the classification of this sample set. Multivariate statistical analysis of the pyrolysis data not only successfully discriminated torbanites from cannel coals, but recognized subtler differences between the examples of these two coal types, in substantial agreement with the petrographic characterization. As such, these methods can substitute for or supplement the traditional microscope-based approach.  相似文献   

8.
The Carboniferous succession in the Donets Basin hosts about 130 seams, each with a thickness over 0.45 m. Nine economically important seams from the (south)western Donets Basin are studied using organic petrographical, inorganic geochemical, and organic geochemical techniques. The main aim of the study is the reconstruction of peat facies of Serpukhovian (Mississippian) and Moscovian (Middle Pennsylvanian) coals.Formation of major coal seams commenced during Serpukhovian times. Early Serpukhovian coal accumulated in a relatively narrow shore-zone and is rich in inertinite and liptinite. Very low ash yields, low to moderate sulphur contents, and upward increasing inertinite contents suggest coal deposition in raised mires.Moscovian coal has a significantly wider lateral extension and is generally rich in vitrinite. Coal properties vary widely in response to different peat facies. Low-sulphur, low-ash k7 coal was formed in a raised mire or in a low-lying mire without detrital input. l1 and l3 seams containing several fluvial partings were formed in low-lying mires. Both seams are more than 2 m thick. Seams m2 and m3 contain high-sulphur coal, a consequence of deposition in a peat with marine influence. In contrast, syngenetic sulphur content is low in the m51 upper seam, which was formed in a lacustrine setting. The late Moscovian n1 seam, up to 2.4 m thick, accumulated in a swamp with a vegetation rich in bryophytes and pteridophytes. The properties of the n1 seam are transitional between those of Serpukhovian and other Moscovian seams. Differences in maceral composition between Serpukhovian and Moscovian coals probably reflect changes in climate and vegetation type.Tuff layers are observed in the l1, l3, and m3 seams. The l3 and m3 seams contain abundant authigenic quartz. Trace element contents are high in many seams. As contents are especially high in seams c102, k7, l3 and m3. Ash in the l3 seam contains up to 8000 ppm As. Co is enriched near the base of several seams. Maxima up to 2400 ppm occur in the ash of the k7 and l3 seams. Cd contents in ash are frequently as high as 30 or 40 ppm.  相似文献   

9.
D/H, 13C/12C, 18O/16O and 34S/32S ratios in the organic matrix and organic solvent extracts of Australian coals, and in the fluids and minerals associated with these coals, are reported and reviewed against similar isotopic data for coals from other regions.Where coals are immature, original isotopic differences between macrolithotypes, and between solvent extracts (lipid concentrates) and insoluble residues, are largely preserved. However, with increasing maturity these characteristic differences, particularly those between macrolithotypes, are rapidly erased. Conversely, where, as indicated by low total sulfur contents, coals of Cretaceous to Permian age were deposited under essentially freshwater conditions, δ34S values* for the organically-bound sulfur remain remarkably constant at +4 ± 3‰ relative to meteoritic sulfur. In similar, younger Tertiary coals, the organic sulfur is markedly enriched in 34S.Five distinctive isotopic patterns, which may be interpreted in terms of the environment of sulfate reduction, can be recognized from 34S/32S ratio measurements on the various forms of sulfur in Australian coals.Isotopic studies of seam gas hydrocarbons collected in situ show these to be unexpectedly strongly depleted in the heavier isotopes of hydrogen and carbon relative to natural gases from proposed humic sources. Furthermore, no pronounced increase in the 13C content in methane with increase in rank of the parent coal was observed. In addition, several sources of associated carbon dioxide have been delineated, including normal maturation processes, invasion of the seams by magnetic carbon dioxide, and interaction of the coal with intrusive magma.Isotopic exchange between free seam gases is not accepted as an explanation for some unusual isotopic fractionations seen, rather the data suggest that these gases may be formed in a state approaching isotopic equilibrium. This argument also satisfactorily explains the isotopic compositions of primary siderite and secondary calcite associated with bituminous coal seams. However, where seams are invaded and permeated with externally derived carbon dioxide, usually of magnetic origin, carbonates are frequently absent, presumably as a result of the action of carbonic acid.  相似文献   

10.
Dynamics of catagenetic changes in the structure of humic coals in the Earth's interior can quantitatively be described using X-ray indices of components (phases), redistribution of which is determined by a system of differential equations in geological time. The system describes changes in the main formation parameters of coal seams in the Earth's interior (subsidence depth, temperature, pressure, and catagenesis index), on the one hand, and kinetics of catagenetic transformation of organic matter (OM), on the other. Such model makes it possible to establish regular changes in the phase composition of humic coals at different stages of coal basin formation. Using Paleozoic (Middle Carboniferous) coals of the Donets Basin as an example, it is established that main changes in the OM structure took place during the maximal subsidence of coal seams at maximal temperatures ranging from 110–15°C (for slightly metamorphosed coals of the L and G ranks) to 28°C (for anthracites) and pressures ranging from 55–74 to 146 MPa, respectively. Major processes leading to the observed X-ray phase composition of coals during the maximal subsidence of sedimentary sequences lasted approximately 40 Ma regardless of the geological age of sediments (Middle Carboniferous or Permian coal seams of the Donets or Kuznetsk coal basins, respectively).  相似文献   

11.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   

12.
Coal as a source rock for oil: a review   总被引:2,自引:0,他引:2  
The geological debate about whether, and to what extent, humic coals have sourced oil is likely to continue for some time, despite some important advances in our knowledge of the processes involved. It is clear that not only liptinites, but also perhydrous vitrinites have the potential to generate hydrocarbon liquids in the course of natural coalification. Some liptinites, especially alginite, cutinite, and suberinite, contain a higher proportion of aliphatic moieties in their structure than other liptinites such as sporinite and resinite and are, therefore, more oil-prone. It is of potential value to be able to predict the several environments of deposition in which coals with high liptinite contents or containing perhydrous vitrinites may have been formed. Review of the distribution of oil-prone coals in time and space reveals that most are Jurassic–Tertiary with key examples from Australia, New Zealand, and Indonesia. Methods based both on experimental simulations and the examination of naturally matured samples have been used to determine the order of generation of hydrocarbons from different macerals. Results are not entirely consistent among the different approaches, and there is much overlap in the ranges of degradation, but it seems probable that in the natural environment vitrinites begin to generate early, followed by labile liptinites such as suberinite, then cutinite, sporinite, and, finally, alginite.Petroleum potential may be determined by experimental simulation of natural coalification or inferred through various micro-techniques, especially fluorescence and infrared (IR) spectroscopy, or bulk techniques such as elemental analysis and 13C NMR spectroscopy. The latter three techniques enable a measure of the polymethylene component of the coal, which now appears to be one of the best available approaches for determining petroleum potential. No method of experimental simulation of petroleum generation from coals is without criticism, and comparative results are highly variable. However, hydrous pyrolysis, confined pyrolysis, and forms of open-system hydrous pyrolysis approach acceptable simulations.Whether, and to what degree generated liquid hydrocarbons are expelled, has long been the central problem in ‘oil from coal’ studies. The structure of vitrinite was believed until recently to contain an interconnected microporous network in which generated oil would be contained until an expulsion threshold was attained. Recent studies show the pores are not interconnected. Combined with a dynamic model of pore generation, it now seems that expulsion of hydrocarbons is best explained by activated diffusion of molecules to maceral boundaries and ultimately by cleats and fractures to coal seam boundaries. The main reason for poor expulsion is the adsorption of oil on the organic macromolecule, which may be overcome (1) if coals are thin and interbedded with clastic sediments, or (2) if the coals are very hydrogen-rich and generate large quantities of oil.The existence of oil in vitrinite is attested to by solvent extractions, fluorescence properties, and by microscopic observations of oil and bitumen. Experimental simulation of expulsion of oil from coals has only recently been attempted. The relative timing of release of generated CO2 and CH4 could have considerable importance in promoting the expulsion of liquid hydrocarbons but the mechanism is unclear. As it is universally agreed that dispersed organic matter (DOM) in some shales readily generates and expels petroleum, it is curious that few consistent geochemical differences have been found between coal macerals and DOM in interbedded shales.Unambiguous evidence of expulsion from coals is limited, and in particular only a few commercial oil discoveries can be confidently correlated to coals. These include Upper Cretaceous Fruitland Formation coals in the USA, from which oil is produced; New Zealand Tertiary coals; and Middle Jurassic coals from the Danish North Sea. It is likely that coals have at least contributed to significant oil discoveries in the Gippsland Basin, Australia; in the Turpan Basin, China; and in the Kutei and Ardjuna basins in Indonesia, but this remains unproven. Early reports that early Jurassic coals in mid-Norway were a major source of the reservoired oils have been shown to be inaccurate.None of the proposed ‘rules of thumb’ for generation or expulsion of petroleum from coals seem particularly robust. Decisions on whether a particular coal is likely to have been an active source for oil should consider all available geological and geochemical information. The assumptions made in computational models should be well understood as it is likely with new understandings of processes involved that some of these assumptions will be difficult to sustain.  相似文献   

13.
华北太原组镜质组中的超微类脂体及其煤性质异常原因   总被引:1,自引:0,他引:1  
王飞宇  傅家谟 《沉积学报》1995,13(3):107-116
利用超薄切片透射电镜分析技术,对华北太原组和山西组煤中镜质组的超微结构和组分进行了分析,确认太原组镜质组中含有较丰富的超微类脂体,且超微类脂体主要来自菌藻类,山西组和太原组镜质组中超微类脂体数量存在明显差异。证实镜质体中超微类脂体数量和其化学性质紧密相关。从超微组分层次解释了山西组和太原组镜质组性质差异的原因,并分析讨论了太原组煤性质异常性的原因和煤还原程度问题,提出成煤过程中明显菌藻类低等生物贡献是太原组煤性质异常的一个重要原因。  相似文献   

14.
The Qinshui basin in southeastern Shanxi Province is an important base for coalbed methane exploration and production in China. The methane reservoirs in this basin are the Carboniferous and Permian coals. Their thickness is strongly controlled by the depositional environments and the paleogeography. In this paper, sedimentological research was undertaken on the outcrop and borehole sections of the Taiyuan and Shanxi formations in the Qinshui basin and the basin-wide lithofacies paleogeography maps for these two formations have been reconstructed. The Taiyuan Formation is composed of limestones, aluminous mudstones, siltstones, silty mudstones, sandstones, and mineable coal seams, with a total thickness varying from 44.9 m to 193.48 m. The coal seams have a thickness ranging between 0.10 and 16.89 m, averaging 7.19 m. During the deposition of the Taiyuan Formation, the northern part of the basin was dominated by a lower deltaic depositional system, the central and southern parts were dominated by a lagoon environment, and the southeastern corner was occupied by a carbonate platform setting. Coal is relatively thick in the northern part and the southeastern corner. The Shanxi Formation consists of sandstones, siltstones, mudstones, and coals, with the limestones being locally developed. The thickness of the Shanxi Formation is from 18.6 m to 213.25 m, with the thickness of coal seams from 0.10 to 10 m and averaging 4.2 m. During the deposition of the Shanxi Formation, the northern part of the Qinshui basin was mainly dominated by a lower deltaic plain distributary channel environment, the central and southern parts were mainly an interdistributary bay environment, and the southeastern part was occupied by a delta front mouth bar environment. The thick coals are distributed in the central and southern parts where an interdistributary bay dominates. It is evident that the thick coal zones of the Taiyuan Formation are consistent with the sandstone-rich belts, mainly located in the areas of the northern lower deltaic plain and southeastern barrier bar environments, whereas the thick coal zones of the Shanxi Formation coincide with the mudstone-rich belts, located in the areas of the central and southern interdistributary bay environments. Translated from Journal of Palaeogeography, 2006, 8(1): 43–52 [译自: 古地理学报]  相似文献   

15.
The hydrocarbon products generated and released from coals continue to be debated. The Mesozoic and Cenozoic southern hemisphere coals have been described as being capable of generating significant quantities of heavy hydrocarbons (oil-like material) when compared to the Paleozoic coals of the northern hemisphere because of changes in the coal forming community. This hypothesis was examined by comparing the pyrolysis-gas chromatography results of a collection of coals. Preliminary results indicate that the most significant difference in pyrolytic products is in the less than nC15 fraction. The data further indicate that coals generate similar types of hydrocarbons independent of age or geographic position if they contain similar bulk maceral content. Coals rich in vitrinite generate predominately aromatic hydrocarbons with lesser amounts of n-paraffins. Coals rich in algae and other exinites generate largely paraffinic hydrocarbons. Coals rich in resins generate naphthenic and aromatic hydrocarbons. The petroleum generating potential of coals also depends on the coal's expulsion efficiency, which is not addressed by this study.  相似文献   

16.
试论等变质煤镜质体性质差异之普遍性   总被引:1,自引:1,他引:0  
选择了不同地区和时代的不同变质程度的5个系列的煤样,对分离富集的镜质体主要特征进行了比较研究。研究发现:按海相和陆相划分,属同一相的不同时代的等变质煤的镜质体性质仍有差异,有些甚至相当明显。这表明,等变质煤镜质体性质存在的差异具有普遍性,并且其成因不止有煤相一个因素。   相似文献   

17.
The main purpose of this study was to recognise the variability of petrographical structure of two coal seams occurring in the Cracow Sandstone Series (Upper Carboniferous/Pennsylvanian, Upper Westphalian), being exploited in the Siersza mine. This mine is located in the eastern part of the Upper Silesia Coal Basin (USCB). The chemical analyses and petrographical features allow the inclusion of these coals to the group of hard brown coals belonging to subbituminous class.Two coal seams (207 and 209/210) of a considerable thickness (7.44 and 6.54 m, respectively), representative of the Cracow Sandstone Series (CSS), were chosen for the petrographic studies. Dominant macroscopic constituents of both seams are banded bright coal and banded coal.The coal seams were sampled in 284 intervals using a channel profile sampling strategy. The microscopical examinations revealed the majority of macerals from the vitrinite group (55%), followed by inertinite (21%), liptinite (11%), and mineral matter (13%). Low values of the vitrinite reflectance (Ro=0.46%) confirm very low coalification of the coal in both seams. Facies analysis indicates that in the course of a mire development, in which the studied coal seams originated, wet forest swamp conditions dominated characterized by a high degree of flooding and gelification as well as by a prevalence of arborescent plants. In such conditions, lithotypes with a large content of bright coal were mainly formed. Petrographic and facies data point to the rheotrophic character of these peatbogs. Frequent changes of the conditions in the peatbog, as it is shown by the variability of petrographic structure of the studied profiles, as well as by lateral changes of the phytogenic sedimentary environment within the coal seams, indicate a strong influence of a river channel on the adjoining peatbogs. An accretion of clastic sediments within the wide river channel belts was balanced mainly by the peatbog growth on the areas outside channels. Frequency and rate of avulsion of the river channels influenced the size, continuity and variability of the peatbogs.  相似文献   

18.
根据大量野外剖面及钻孔资料,将河北南部地l区晚石炭世至早二叠世地层划分为4个含煤层序。层序1为第一个关键成煤层序,代表了海陆交替型含煤岩系形成期间的第一次大规模海水进退序列,含有全区可追踪对比的煤层.但聚煤作用较弱;层序2为第二个关键成煤层序,由于盆地的构造转换引起海侵方向的改变,该层序煤层为海侵事件成煤,形成了全区稳定发育的大青煤(8^#);层序3为华北板块发生“翘翘板”运动后的稳定沉积层序,高水位体系域形成的煤层稳定性好(6^#、7^#):层序4为陆表海盆地向陆相盆地过渡形成的含煤层序,该层序高位体系域含煤性好.煤层厚,全区可对比。  相似文献   

19.
Jurassic coals, coaly shales, shales and claystones from the Eastern Pontides in NE Turkey have been investigated using microscopical, petrophysical and detailed organic geochemical methods in order to determine their catagenetic stage, to reveal the composition of the organic matter and to discuss the depositional environment. The Liassic–Dogger period in the Eastern Pontides was characterised by the presence of a rift system which resulted in rock units of very variable lithology and facies. Coal seams, ranging from a few centimetres to several decimetres and intercalated with shales, claystones and sandstones occur within the basal part (the Aggi Formation) as well as in the uppermost part (the Hamurkesen Formation) of the rift deposits. All coal seams investigated are at a catagenetic maturation stage corresponding to subbituminous B up to low volatile bituminous ranks. They represent a depositional environment of short-lived swamp areas with intense aerobic reworking of the higher plant detritus by heterotrophic bacteria, but with possible anaerobic microenvironments at deeper levels. At least some coal seams were influenced temporarily by marine ingressions. Most samples are impure humic coals with highly variable chemical compositions as indicated by the broad range of their hydrogen contents. This variation in hydrogen content is partly attributed to variable contributions of algal material. On the other side, considering several analytical results, the hydrogen variation is primarily due to bacterial reworking that affected the composition of the organic matter to variable extent and resulted especially in an enrichment of bacterial lipids. Bacterial reworking by an active microbial community within the upper layer of the peat swamp is inferred from elevated concentrations of iso-alkanes even exceeding those of the corresponding n-alkanes in several samples which, to the best of our knowledge, have not been observed with coals before.  相似文献   

20.
Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants.Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial–interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance–diversity composition of the older coals, presaging patterns of tree–fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号