首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
激波/湍流边界层干扰问题广泛存在于高速飞行器内外流动中, 激波干扰会导致局部流场出现强压力脉动, 严重影响飞行器气动性能和飞行安全. 为了考察干扰区内脉动压力的统计特性, 对来流马赫数2.25, 激波角33.2°的入射激波与平板湍流边界层相互作用问题进行了直接数值模拟研究. 在对计算结果进行细致验证的基础上, 分析比较了干扰区外层和物面脉动压力的典型统计特征, 如脉动强度、功率谱密度、两点相关和时空关联特性等, 着重探讨了两者的差异及其原因. 研究发现, 激波干扰对外层和物面压力脉动的影响差异显著. 分离区内脉动以低频特征为主, 随后再附区外层压力脉动的峰值频率往高频区偏移, 而物面压力脉动的低频能量仍相对较高. 两点相关结果表明, 外层和物面脉动压力的展向关联性均明显强于其流向, 前者积分尺度过激波急剧增长随后缓慢衰减, 而后者积分尺度整体上呈现逐步增大趋势. 此外, 时空关联分析结果指出, 脉动压力关联系数等值线仍符合经典的椭圆形分布, 干扰区下游压力脉动对流速度将减小, 外层对流速度仍明显高于物面.   相似文献   

2.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


3.
Buoyant flows often contain regions with unstable and stable thermal stratification from which counter gradient turbulent fluxes are resulting, e.g. fluxes of heat or of any turbulence quantity. Basing on investigations in meteorology an improvement in the standard gradient-diffusion model for turbulent diffusion of turbulent kinetic energy is discussed. The two closure terms of the turbulent diffusion, the velocity-fluctuation triple correlation and the velocity-pressure fluctuation correlation, are investigated based on Direct Numerical Simulation (DNS) data for an internally heated fluid layer and for Rayleigh–Bénard convection. As a result it is decided to extend the standard gradient-diffusion model for the turbulent energy diffusion by modeling its closure terms separately. Coupling of two models leads to an extended RANS model for the turbulent energy diffusion. The involved closure term, the turbulent diffusion of heat flux, is studied based on its transport equation. This results in a buoyancy-extended version of the Daly and Harlow model. The models for all closure terms and for the turbulent energy diffusion are validated with the help of DNS data for internally heated fluid layers with Prandtl number Pr = 7 and for Rayleigh–Bénard convection with Pr = 0.71. It is found that the buoyancy-extended diffusion model which involves also a transport equation for the variance of the vertical velocity fluctuation gives improved turbulent energy diffusion data for the combined case with local stable and unstable stratification and that it allows for the required counter gradient energy flux.  相似文献   

4.
The natural dissimilarity or decorrelation of stream-wise velocity and temperature fluctuations in fully developed turbulent channel and plane Couette flows was studied using direct numerical simulation (DNS). For both of the flow configurations, a Reynolds number of about 150 was used based on the friction velocity and half the distance between walls. Buoyancy effects were neglected, and only results with a molecular Prandtl number, Pr, equal to 1 are presented. The boundary conditions for the thermal field were a uniform source of energy in the domain and isothermal wall temperature for the channel and Couette flow, respectively. The importance of those events responsible for wall-normal turbulent fluxes in the generation of axial velocity and temperature dissimilarity was examined using conditional probability. It was found that the dissimilarity in the whole domain was higher in Couette than in channel flow. It was also found that for wall-normal turbulent fluxes (momentum and heat), the averaged dissimilarity in the whole domain was slightly more correlated with those events in the second or fourth quadrant, according to the quadrant analysis technique. For channel flow, the importance of both kinds of events was similar, while for Couette flow there was a predominance in the generation of dissimilarity by those events in the fourth quadrant. Also, for both flow configurations and throughout the wall-normal direction, it was found that in the buffer region there was a predominance of events in the fourth quadrant associated with dissimilarity for both wall-normal turbulent fluxes. In the frequency domain, the distribution of energy showed that there was a high-frequency shift experienced from the wall towards the centerline by the temperature spectrum with regards to the axial velocity spectrum, for which the action of the fluctuations of the wall-normal velocity was the main cause. In the central region of the flow, on the other hand, there was a global convergence of all spectra towards the pressure spectrum, with this convergence lower for Couette flow. Finally, it is shown that the dissimilarity in developed conditions is caused by the greater correlation existing for the temperature fluctuation with the instantaneous axial pressure gradient than for the velocity fluctuation with the instantaneous axial pressure gradient.  相似文献   

5.
本文报告了楔形钝体分离流区域的湍流实验,提供了分离区内的时均速度、压力,湍流度和雷诺应力的分布,并对分离区的湍流特征进行了分析。实验表明,分离区内时均速度具有很大的横向梯度。湍流度和雷诺应力的分布曲线很相纵,它们在回流区变化较为平缓,而在混合区,当它们达到极大值之后,便以指数形式向(?)衰减。压力在回流区内变化也不大,但在混合区却具有明显的横向梯度。  相似文献   

6.
本文提出了气固两相流动的湍流扩展数学模型,本模型用k-ε双方程模型求解气相湍流场,并根据气流脉动的频谱、能谱曲线提出了随机富工级数来模拟气相脉动速度,用拉氏方法描述颗粒的运动,故称为脉动频谱随机颗粒轨道模型。本文还给出了本模型在气固多相射流和流化床内应用的实例。  相似文献   

7.
An approach to derive turbulent scaling laws based on symmetry analysis is presented. It unifies a large set of scaling laws for the mean velocity of stationary parallel turbulent shear flows. The approach is derived from the Reynolds averaged Navier–Stokes equations, the fluctuation equations, and the velocity product equations, which are the dyad product of the velocity fluctuations with the equations for the velocity fluctuations. For the plane case the results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the centre of a Couette flow and in the centre of a rotating channel flow, and a new exponential mean velocity profile that is found in the mid-wake region of high Reynolds number flat-plate boundary layers. The algebraic scaling law is confirmed in both the centre and the near wall regions in both experimental and DNS data of turbulent channel flows. For a non-rotating and a moderately rotating pipe about its axis an algebraic law was found for the axial and the azimuthal velocity near the pipe-axis with both laws having equal scaling exponents. In case of a rapidly rotating pipe, a new logarithmic scaling law for the axial velocity is developed. The key elements of the entire analysis are two scaling symmetries and Galilean invariance. Combining the scaling symmetries leads to the variety of different scaling laws. Galilean invariance is crucial for all of them. It has been demonstrated that two-equation models such as the k– model are not consistent with most of the new turbulent scaling laws.  相似文献   

8.
章光华  符松 《力学学报》2000,32(2):141-150
基于对可压缩湍流中脉动压力场和脉动速度场特征的理论分析以及DNS结果,建立了可均匀剪切湍流中压力-变形率关联的压缩性修正模式,应用这个模式,加上Sarkar等建立的脉动体胀率项(dilatational terms)的模式,预测可压缩均匀剪切湍流随时间的发展,所得雷诺应力各是性张量的平衡值与Blaisdell等的DNS数据非常一致。这个模式准确地预测出均匀剪切湍流中压缩性导致的雷诺应力结构的“流向  相似文献   

9.
《力学快报》2021,11(4):100279
The immersed boundary method has been widely used for simulating flows over complex geometries.However, its accuracy in predicting the statistics of near-wall turbulence has not been fully tested. In this work, we evaluate the capability of the curvilinear immersed boundary(CURVIB) method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows. Simulation results show that quantities including the time-averaged streamwise velocity, the rms(root-mean-square) of velocity fluctuations, the rms of vorticity fluctuations, the shear stresses, and the correlation coefficients of u and v computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations. More importantly, it is found that the time-averaged pressure, the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.  相似文献   

10.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

11.
An improved drag force coefficient of gas-particle interaction based on the traditional Wen’s 1966 model is proposed. In this model, a two-stage continuous function is used to correct the discontinuous switch when porosity less than 0.2. Using this proposed correlation and the Wen’s 1966 model, a gas-particle kinetic energy and particle temperature model is developed to predict the hydrodynamic characteristics in backward-facing step gas-particle two-phase turbulent flows. Numerically results showed that they are in good agreement with experiment measurements and presented model are better due to a improvement of momentum transport between gas and particle phases. Particle dispersions take on the distinctively anisotropic behaviors at every directions and gas phase fluctuation velocity are about twice larger than particle phases. Particle phase has a unique transportation mechanism and completely different from the gas phase due to different density. Furthermore, the correlation values of axial–axial gas-particle are always greater than the radial–radial values at fully flow regions. The gas-particle two-phase interactions will make influence on two-phase turbulent flow behaviors.  相似文献   

12.
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remai  相似文献   

13.
An unsteady transient axisymmetric turbulent jet was studied experimentally. The initial flow perturbation consisted of a sudden and large decrease in the ejection velocity. The temporal evolution of the mean and fluctuating unsteady velocity field was measured by using X hot-wire probes. In the jet far field, adaptation of the externally imposed unsteadiness to the local jet time scale is confirmed quantitatively. The main features of the phase averaged velocity field are presented and comments are made about the instantaneous state of the turbulence energetics. Transient mean radial velocities are deduced and an important increase of the instantaneous rate of entraining external fluid into the jet is found. Finally, we show that the pressure effect due to radial impusle terms plays an important role in the propagation of the mean perturbation. The longitudinal adaptation of the perturbation time scale driven by the local jet time scale provides a turbulent flow that is intermediate to quasi-static flows and rapidly distorted flows.We wish to thank Professor H. Fiedler and Professor M. Wolfshtein for their helpful comments about this work. We have benefited greatly from discussions with Dr. H.J. Nuglisch, Professor E.K. Longmire and Dr. A. Sevrain and of the technical support of G. Couteau and J.F. Alquier.  相似文献   

14.
Stereoscopic PIV: validation and application to an isotropic turbulent flow   总被引:1,自引:1,他引:1  
 A new stereoscopic PIV system to measure the three velocity components is developed and applied to grid turbulence flows. This system uses two CCD cameras coupled with an accurate cross-correlation calculation method. An experimental test (based upon three-dimensional displacements) has been carried out to demonstrate the capability of this process to locate the maximum of correlation, and to detect accurately the 3D displacements. Experiments in a well-established turbulent flow have validated the method for quantitative measurements and a comparison with LDV results showed a good agreement in terms of mean and fluctuating velocities. Combined PIV and stereoscopic PIV measurements on a turbulent flow revealed the need to the stereoscopic systems to measure accurate 2D velocity fields. It has been shown that an error of up to 10% in the velocity fluctuation measured by conventional PIV could be attained due to 3D effects in highly turbulent cases. Finally, the digital cross-correlation technique adapted to the determination of small displacements seems to be the most suitable technique for stereoscopic PIV. Received: 22 July 1997/Accepted: 27 January 1998  相似文献   

15.
We attempt to improve accuracy in the high‐wavenumber region in DNS of incompressible wall turbulence such as found in fully developed turbulent channel flow. In particular, it is shown that the improvement of accuracy of viscous terms in the Navier–Stokes equations leads to the improvement of accuracy of higher‐order statistics and various spectra. It is emphasized that increase in required computational cost will not be crucial when incompressible flow is simulated, because the introduction of a higher‐order scheme into the viscous terms does not increase computational cost for solving the Poisson equation. We introduced fourth‐order and eighth‐order central compact schemes for discretizing the viscous terms in DNS of a fully developed turbulent channel flow. The results are compared with those using second‐order and fourth‐order central‐difference schemes applied to the viscous terms and those obtained by the spectral method. The results show that accuracy improvement of the viscous terms improve accuracy of higher‐order statistics (i.e., skewness and flatness factors of streamwise velocity fluctuation) and various spectra of velocity and pressure fluctuations in the high‐wavenumber region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
采用滑移速度壁模型实现了浸入边界方法与壁模型相结合的大涡模拟.本文首先分别采用平衡层模型和非平衡壁模型对周期山状流进行数值模拟,以考查在壁模型中考虑切向压力梯度的作用.数值结果表明,流场的压力对本文所采用的壁模型形式并不敏感,但是考虑切向压力梯度可以显著改进壁面摩擦力的计算结果,并且能够准确的预测强压力梯度区以及分离区内的流动平均统计特性.不考虑压力梯度效应的平衡层模型显著低估了壁面摩擦力的分布,同时无法准确预测分离区内的平均速度剖面.非平衡模型的修正项正比于切向压力梯度和壁面法向距离,因此在强压力梯度区或者网格较粗时,计算得到的平均压力和摩擦力分布以及流动的低阶统计量均与参考的实验和计算结果吻合.在此基础上,通过回转体绕流的大涡模拟考查了该方法用于模拟高雷诺数壁湍流的适用性,非平衡壁模型可以准确地捕捉流动的物理结构并较准确地预测其水动力学特性.结果表明,将浸入边界方法与非平衡滑移速度壁模型相结合的大涡模拟,有望成为数值模拟复杂边界高雷诺数壁湍流的工具.   相似文献   

17.
This paper presents a detailed study of incompressible turbulent flow based on a newly developed statistical partial average scheme. As the ensemble average is taken on two groups of turbulent fluctuations separately, the partial average scheme is able to capture the first-order statistical moment of the fluctuation field, providing valuable information in addition to what have been known in the past from the conventional Reynolds average. The first-order statistical moment serves as the foundation in formulating theories of orthotropic turbulence and a momentum transfer chain in the modeling of second-order correlation terms, and eventually leads to a complete set of equations of incompressible turbulent flow. Without any empirical coefficients, the same set of the equations is used to simulate statistical mean behaviors and coherent structures of various benchmark turbulent flows. The simulated results are in good agreement with experimental data.  相似文献   

18.
An algebraic closure for the non-Newtonian Navier–Stokes equations is presented which accounts for the effect of a dilute fiber suspension. The model is intended to be used in simulations of turbulent drag reduction by fiber additives, and can be considered as a computationally efficient alternative to the existing rheological models for fiber suspensions in turbulent wall-bounded flows. It is based on the assumption that the suspended elongated particles are aligned with the local velocity fluctuation vector. The model is proved to be Galilean invariant. One-way coupled simulations and comparison with a direct solution of the underlying Fokker–Planck equation show a considerable improvement over an existing and comparable model. Finally, two-way coupled simulations demonstrate that the model predicts flow statistics that are in very good agreement with those obtained by the moment approximation approach. Interestingly, the model is realistic in terms of the polymer concentration. Using the proposed model, the cost of simulating a drag-reduced flow in terms of CPU-time is slightly more than that of a Newtonian flow.  相似文献   

19.
The present work examines the predictive capability of a two-fluid CFD model that is based on the kinetic theory of granular flow in simulating dilute-phase turbulent liquid-particle pipe flows in which the inter-stitial fluid effect on the particle fluctuating motion is significant.The impacts of employing different drag correlations and turbulence closure models to describe the fluid-particle interactions(i.e.drag force and long-range interaction)are examined at both the mean and fluctuating velocity levels.The model pre-dictions are validated using experimental data of turbulent liquid-particle flows in a vertical pipe at different particle Reynolds numbers(ReP > 400 and ReP < 400),which characterize the importance of the vortex shedding phenomenon in the fluid-phase turbulence modulation.The results indicate that(1)the fluctuating velocity level predictions at different ReP are highly sensitive to the drag correlation selec-tion and(2)different turbulence closure models must be employed to accurately describe the long-range fluid-particle interaction in each phase.In general,good agreement is found between the model predic-tions and the experimental data at both the mean and fluctuating velocity levels provided that appropriate combinations of the drag correlation and the turbulence closure model are selected depending on Rep.  相似文献   

20.
This paper presents a comprehensive comparison of the mean velocity and turbulence measurements from a four-hole pressure probe, also known as the Cobra probe, and an X-probe in plane mixing layers. The objective is to validate the measurement accuracy of the Cobra probe in a flow where the turbulence reaches high levels, but whose properties are well known. The comparison is made for the mean velocities, Reynolds stresses, triple products, and spectra, and demonstrates that the Cobra probe has reasonable accuracy for some of these quantities, such as the mean streamwise velocity and primary shear stress, but not for others, such as the mean normal velocity. The correlation of the pressure and the streamwise velocity, measured by the Cobra probe, behaves correctly in the potential flow. However, the correlation of the pressure and the cross-stream velocity, which appears in the transport equation for the turbulent kinetic energy, and the pressure redistribution term in the corresponding equation for the streamwise normal stress, are poorly measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号