首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
针对海军战术导弹固体火箭发动机端羟基聚丁二烯(hydroxyl-terminated polybutadiene,HTPB)推进剂老 化问题,对HTPB 推进剂粘结体系的老化及防护进行探讨。对丁羟聚氨酯热氧老化机理及影响因素进行介绍,分别 从物理防护与防老剂的化学防护2 方面概述了HTPB 推进剂粘结体系的防护。从老化实验、仪器分析及分子模拟3 方面对老化及防护的研究方法进行了总结,并对分子模拟技术在HTPB 推进剂老化及防护研究的应用前景进行展望。 该研究对未来HTPB 推进剂的防老化及导弹贮存、使用性能的提高有一定指导意义。  相似文献   

2.
NEPE推进剂湿老化特性研究   总被引:4,自引:1,他引:3  
开展了NEPE推进剂在不同环境条件下湿老化试验,监测了试验过程中推进剂的吸湿率、力学性能和稳定剂含量的变化.结果表明,吸湿严重影响NEPE推进剂力学性能.85%RH环境条件下,抗拉强度下降幅度可达70%.NEPE推进剂吸湿平衡湿度低,11%RH时仍有轻微吸湿.短期吸湿引起的力学性能下降可通过干燥手段恢复.湿老化速度与试件尺寸及暴露表面积有关.高温加速老化条件下,湿气加剧NEPE推进剂的化学老化,表明长期贮存有必要考虑湿气引起的不可逆化学反应.  相似文献   

3.
为了准确地描述固体火箭发动机端羟基聚丁二烯(HTPB)推进剂/衬层黏接界面在不同温度下的力学特性,从试验和数值仿真两方面研究了该黏接界面的Ⅰ型破坏特性.首先,通过单轴拉伸实验获取了不同温度下的载荷-位移曲线,并采用高速摄像机获取了黏接界面的破坏过程,分析了黏接界面的破坏形式,发现HTPB推进剂/衬层黏接界面的破坏形式为...  相似文献   

4.
采用动态接触角和界面张力仪研究了氮含量不同的硝化棉(NC)与不同粒度的高氯酸铵(AP)表面性能以及NC与填料之间的界面性能,研究了界面性能对含AP和铝粉(Al)改性双基推进剂(AP/Al/CMDB)力学性能的影响。结果表明,NC的氮含量越低,AP的粒度越小,它们的表面张力以及其极性分量和非极性分量愈大。同时AP的粒度越小,NC与AP间界面张力和粘附功越小;但由于界面张力减小的效应强于粘附功越小的效应,推进剂的抗拉强度仍增大。而NC氮含量愈小,NC与AP间界面张力越小、粘附功愈大,推进剂抗拉强度增强。  相似文献   

5.
曾毅  黄薇  陈家兴  许进升  陈雄  武锐 《含能材料》2024,32(2):162-174
为了深入探究端羟基聚丁二烯(HTPB)推进剂在热力耦合作用下的细观损伤机理,采用了试验表征和理论分析相结合的方法。具体而言,对在不同环境温度(50,70 ℃和90 ℃)及不同加载次数下的HTPB推进剂进行了细观层面分析。在50 ℃下,分别进行了约3000次和10800次加载;在70 ℃下,分别进行了约1800,3600次和7030次加载;而在90 ℃下,则进行了约1800次加载。研究发现:在热力耦合加速老化作用下,HTPB推进剂的细观损伤比单一因素老化更为显著。其细观损伤机理主要涉及两方面:一是由于基体热降解,基体自身的承载性能及其与颗粒间的粘接强度均有所下降,进而导致颗粒“脱湿”;二是颗粒的“脱湿”现象反过来进一步加剧了基体的热降解。这种相互作用使得细观损伤更加严重。研究还发现,随着老化温度的增加,细观损伤的程度会加剧,但温度过高将改变老化过程的细观损伤机理。此外,研究指出,在其他条件不变的前提下,合理选择终止加载次数对于判断HTPB推进剂是否发生显著细观损伤至关重要。本研究中,当50 ℃和70 ℃下的加载次数比()分别超过0.281和0.330时,HTPB推进剂会产生显著的细观损伤。  相似文献   

6.
将NEPE推进剂置于不同的温度和湿度条件下贮存,测试其力学性能、凝胶分数和稳定剂含量的变化规律。研究发现:NEPE推进剂湿热双应力老化可以表示为物理老化和化学老化两部分的叠加;物理老化表现为湿老化特征,力学性能变化先快后慢,趋向于定值;化学老化表现为热老化特征,前期力学性能出现一个平台区,持续一段时间后,迅速下降至一个更低的平台;存在湿热两种因素的协同效应:湿气对化学老化具有加速效应,温度对物理老化具有增速和增幅效应。NEPE推进剂湿热双应力老化的基本化学特性与热老化类似,但是湿度对于稳定剂消耗与粘合剂网络降解都具有加速作用,可视为湿气降低了热老化的表观活化能。  相似文献   

7.
丁羟推进剂的化学老化机理与改善老化性能的技术途径   总被引:3,自引:1,他引:3  
以丁羟推进剂的化学老化机理了为基础,综述了改善丁羟推进剂的化学老化性能的三个主要途径,改善高氯酸铵(AP)的热稳定性,增强AP/HTPB间的界面粘结效应,提高HTPB的抗氧化能力。  相似文献   

8.
纳米氧化铁对HTPB推进剂性能影响   总被引:1,自引:1,他引:0  
制备了四种不同形貌的纳米氧化铁Ⅰ-Ⅳ和5种9~14/65~70/17/3/1-粘合剂/AP/Al/二茂铁/普通氧化铁或纳米氧化铁Ⅰ-Ⅳ推进剂(HTPB推进剂).研究了纳米氧化铁对HTPB推进剂力学性能、燃烧特性、安全性能的影响.结果表明,纳米氧化铁Ⅱ是四种纳米氧化铁中效果最好的催化剂,含纳米氧化铁Ⅱ配方推进剂,在25℃条件下,最大抗拉强度为0.83 MPa,最大伸长率60.0%,-40 ℃条件下,最大抗拉强度为2.00 MPa,最大伸长率45.0%;6.86 MPa压强下,燃速为43.24 mm·s-1,压强指数为0.27;药浆50%爆炸的临界撞击能大于14J,摩擦感度小于80%,安全性能与含普通氧化铁配方相当.  相似文献   

9.
对某型号HTPB推进剂在35℃、50℃、65℃条件下进行了加速寿命试验,并选用最大延伸率表征推进剂性能变化情况;对HTPB推进剂高温加速寿命试验的老化起点进行了修正,并推导出了考虑泊松比条件下的推进剂老化反应速率模型;根据加速老化试验结果,对模型的参数进行了求解,验证得出考虑泊松比变化条件下的某型号丁羟推进剂药柱预估寿命要长于未考虑泊松比的预估值;对含有不同含量防老剂的HTPB推进剂在80℃条件下的加速寿命试验结果表明:少量防老剂的添加可以有效对推进剂进行延寿.  相似文献   

10.
NEPE推进剂贮存老化性能研究   总被引:2,自引:1,他引:1  
为考察硝酸酯增塑聚醚(NEPE)推进剂的热老化特性,研究了其在60,70,80℃下的热失重百分数、硬度、凝胶百分数、相对交联密度以及增塑剂BTTN和NG含量的变化。结果表明:由于NEPE推进剂中增塑剂的挥发和分解,其热失重百分数、硬度随老化时间的延长而增加,因粘合剂降解断裂,其凝胶百分数和相对交联密度随老化时间的延长而降低;增塑剂BTTN和NG含量随老化时间的延长而降低,且BTTN和NG含量的损失符合一级反应规律。NEPE推进剂的热老化机理主要是增塑剂硝酸酯的分解和挥发,粘合剂的降解断链。  相似文献   

11.
高固体含量丁羟推进剂性能研究   总被引:3,自引:2,他引:1  
为进一步提高HTPB推进剂的能量水平,从理论和实验两个方面研究了固体组分含量对HTPB推进剂的能量性能、燃烧性能和力学性能的影响。结果表明,随固体含量的增加,推进剂理论比冲增加,当固体含量为90%(高氯酸铵37%、黑索今36.6%、铝粉17.4%)时,其理论比冲可达270.62s;高氯酸铵43%、黑索今30%、铝粉17%时,燃速压力指数约为0.34,-40℃时的最大延伸率为48%。当固体含量为88%(高氯酸铵48%、黑索今23%、铝粉17%)时,调节HTPB推进剂配方填料粒度及级配,燃速可从7.0MPa下的7.0mm·s-1提高至10.9mm·s-1,燃速压力指数相当(约为0.4),20℃时的最大延伸率可达74%。  相似文献   

12.
基于湿热加速老化试验的HTPB固体推进剂寿命预估   总被引:1,自引:0,他引:1  
借鉴量子力学理论关于电子产品老化反应速率与环境温、湿度的关系,将Eyring和Arrhenius模型相结合,建立了固体推进剂贮存使用寿命的湿热老化模型,并通过试验数据拟合得到具体的经验公式。利用该模型预估出某HTPB固体推剂在室温20℃、相对湿度为50%的贮存寿命,与实际贮存寿命进行了对照。结果表明,采用将温湿因素引入推进剂老化模型的方法,可以使推进剂寿命预测的结果更接近于发动机中推进剂的实际使用寿命。  相似文献   

13.
杨明  李高春  邱欣  姜爱民 《含能材料》2015,23(6):553-557
采用扫描电镜(SEM)原位拉伸试验系统对端羟基聚丁二烯(HTPB)推进剂/衬层粘接界面试件拉伸破坏过程进行了观察,实时采集了界面变形破坏过程的SEM图像,结合粘接界面的宏观应力-应变曲线,分析其在拉伸过程中细观变形破坏机理。结果表明:推进剂/衬层粘接界面拉伸的过程可以分为斜率较大的线性段(应变为0~5%)、斜率较小的线性段(应变为5%~25%)、非线性段(应变为25%~29%)和破坏段(应变为29%~35%)四个阶段,且验证试验所用试件的推进剂/衬层粘接界面分别在应变为25%和30%达到极限应力。研究发现试件内部颗粒的脱湿和基体间的脱粘是导致其力学性能变化及失效的主要原因,同时,可用推进剂相颗粒脱湿尺寸随应变的变化表现粘结界面失效的变化规律:脱湿尺寸随应变线性增大表示粘接界面还未破坏,当脱湿尺寸增大速率减小或不增大时,表示粘接界面已经破坏。  相似文献   

14.
杜永强  郑坚  彭威  张晓  顾志旭 《含能材料》2016,24(10):936-940
针对常用老化模型不能准确描述端羟基聚丁二烯(HTPB)推进剂贮存老化不同阶段特点的问题,提出了一种分段老化模型。对HTPB推进剂进行了高温加速寿命试验,以最大延伸率作为性能变化表征参数,将HTPB推进剂的老化机理分三个阶段进行了分析,并根据老化不同阶段的相关性分析结果,建立了分段老化模型。利用时温等效原理,得到了高温(60℃)加速老化和常温(25℃)有效贮存的时间转换关系,结合分段老化模型,预估HTPB推进剂在常温(25℃)条件下贮存寿命为11.60年。该模型的相关系数R0.95,标准差R_(std)0.015。  相似文献   

15.
针对废弃丁羟推进剂(HTPB)韧性强和感度高的特性,在保证试验过程安全的前提下,分别研究了湿式笼式粉碎法、干式旋风切削法和远程控制切割法这三种方式粉碎废弃HTPB。结果表明:以粉碎比(即进料直径与出料直径之比)和AP、Al的损失率为评价标准,干式旋风切削法粉碎后的物料直径最小约为1mm,有效成分损失率低于1.4%,由其制备的工业炸药可被8#雷管引爆,验证了该方式粉碎HTPB较为理想。  相似文献   

16.
HTPB推进剂脱湿与力学性能的相关性研究   总被引:4,自引:1,他引:4  
针对载荷作用下影响复合推进剂力学特性的脱湿问题,采用等速拉伸和CCD显微分析的试验方法,研究了不同拉伸速率下的脱湿损伤演化过程。建立了粘弹性本构模型,利用细观力学及界面力学的理论,分析试验测得的宏观力学性能发生发展的内在细观原因。结果表明:颗粒/基体的界面脱湿是宏观应力应变曲线非线性的重要原因,也直接导致材料泊松比的下降;界面脱湿的损伤程度由应变值决定,并与应变率具有一定的相关性,泊松比也是定量表征脱湿的重要参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号