首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The intracellular sodium concentration ([Na+]i) and resting potential (Em) of cultured mouse glomus cells (clustered and isolated) were simultaneously measured with intracellular Na+-sensitive and conventional, KCl-filled, microelectrodes. Results obtained in clustered and isolated cells were similar. During normoxia (PO2 122 Torr), [Na+]i was 12-13 mM corresponding to a Na+ equilibrium potential (ENa) of about 58 mV. Em was about -42 mV. Hypoxia, induced by Na2S2O4 1 mM (PO2 10 Torr), depolarized the cells by about 20 mV, [Na+]i increased by 21 mM and ENa dropped to about 35 mV. One millimolar of CoCl2 depressed, or blocked, the effects of Na2S2O4 on [Na+]i but did not affect hypoxic depolarization. Voltage-clamping at -70 mV, while delivering pulses of different amplitudes, produced only small (about 10 pA) and slow TTX-insensitive inward currents. Fast and large (TTX-sensitive) inward currents were not detected. The cell conductance (measured with voltage ramps) was less than 1 nS. It was not affected by hypoxia but was depressed by cobalt. Voltage ramps elicited small inward currents in control and hypoxic solutions that were much smaller than those induced by barium (presumably enhancing calcium currents). Also, normoxic and hypoxic currents had lower thresholds and their troughs were at more negative voltages than in the presence of Ba2+. All currents were blocked by 1 mM CoCl2 suggesting that, at this concentration, cobalt exerted a nonspecific effect on glomus membrane channels. Hypoxia induced a large [Na+]i increase (presumably through inflow), but very small voltage-gated inward currents. Thus, Na+ increases (inflow) probably occurred by disturbing a Na+/K+ exchange mechanism and not by activation of voltage-gated channels.  相似文献   

2.
We investigated the effect of changes in membrane-voltage on intracellular sodium concentration ([Na+]i) of dopamine-sensitive neurons of the substantia nigra pars compacta in a slice preparation of rat mesencephalon. Whole-cell patch-clamp techniques were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive probe, sodium-binding benzofuran isophthalate (SBFI). Hyperpolarization of spontaneously active dopamine neurons (recorded in current-clamp mode) caused the cessation of action potential firing accompanied by an elevation in [Na+]i. In dopamine neurons voltage-clamped at a holding potential of -60 mV elevations of [Na+]i were induced by long-lasting (45-60 s) voltage jumps to more negative membrane potentials (-90 to -120 mV) but not by corresponding voltage jumps to -30 mV. These hyperpolarization-induced elevations of [Na+]i were depressed during inhibition of I(h), a hyperpolarization-activated inward current, by Cs+. Hyperpolarization-induced elevations in [Na+]i might occur also in other cell types which express a powerful I(h) and might signal lack of postsynaptic activity.  相似文献   

3.
Our goal was to identify pairs of charged residues in the membrane domains of the Na+/glucose cotransporter (SGLT1) that form salt bridges, to obtain information about packing of the transmembrane helices. The strategy was to neutralize Glu225, Asp273, Asp294, and Lys321 in helices 6-8, express the mutants in oocytes, measure [14C]-alphaMDG uptake, and then attempt to find second-site mutations of opposite charge that restored function. alphaMDG uptake by E225A was identical to that by SGLT1, whereas transport was reduced by over 90% for D273A, D294A, and K321A and was not restored in the double mutants D273A/K321A or D294A/K321A. This suggested that K321 did not form salt bridges with D273 or D294 and that E225 was not involved in salt-bridging. Neutralization of K321 dramatically changed the Na+ uniport and Na+/glucose cotransport kinetics. The maximum rate of uniport in K321A increased 3-5-fold with a decrease in the apparent affinity for Na+ (70 vs 3 mM) and no change in apparent H+ affinity (0.5 microM). The change in Na+ affinity caused a +50 mV shift in the charge/voltage (Q/V) and relaxation time constant (tau)/voltage curves in the presteady-state kinetics. The presteady-state kinetics in H+ remained unchanged. The lower Na+ affinity resulted also in a 200-fold increase in the apparent K0.5 for alphaMDG and phlorizin. Replacements of K321 with alanine, valine, glutamine, arginine, or glutamic acid residues changed the steady-state kinetics in a similar way. Therefore, we suggest that K321 determines, directly or indirectly, (i) the rate and selectivity of SGLT1 uniport activity and (ii) the apparent affinities of SGLT1 for Na+, and indirectly sugar in the cotransport mode.  相似文献   

4.
Whole cell voltage- and current-clamp recordings were carried out to investigate the effects of clonidine, an alpha 2-adrenoceptor agonist, in L4 and L5 dorsal root ganglion (DRG) neurons of the rat. In voltage-clamp mode, application of 20 microM clonidine reversibly reduced the inward current evoked by hyperpolarizing voltage steps. The "clonidine-sensitive current" was obtained by subtracting the current during clonidine application from the control current, and its properties were as follows. 1) It was a slowly activating inward current evoked by hyperpolarization. 2) The reversal potential in the standard extracellular solution ([K+]o = 5 mM, [Na+]o = 151 mM) was -38.3 mV, and reduction of [Na+]o shifted it to a more negative potential, whereas an increase of [K+]o shifted it to a more positive potential, indicating that the current was carried by Na+ and K+ (PNa/PK = 0.22). 3) The relationship between the chord conductance underlying the clonidine-sensitive current and voltage could be fitted by a Boltzmann equation. These results indicate that the clonidine-sensitive current corresponds to a hyperpolarization-activated current (Ih), i.e., clonidine inhibits Ih in rat DRG neurons. DRG neurons were classified as small (15.9-32.9 microns diam), medium-sized (33-42.9 microns), and large (43-63.6 microns), and 7 of 19, 24 of 25, and 22 of 22 of these types exhibited Ih with mean +/- SE clonidine-induced inhibition values of 36.1 +/- 3.5% (n = 7), 43.1 +/- 3.7% (n = 24), and 35.1 +/- 2.7% (n = 22), respectively. Clonidine application to L4 and L5 DRG neurons excised from rats the sciatic nerves of which had been transected 14-35 days previously (transected DRG neurons) also reduced Ih. In current-clamp mode, 9 of 13 intact and 4 of 6 transected medium-sized DRG neurons that exhibited Ih responded to clonidine with hyperpolarization (> 2 mV). Some medium-sized DRG neurons exhibited repetitive action potentials in response to a depolarizing current pulse, and clonidine reduced the firing discharge frequencies in 8 of 11 intact and 3 of 4 transected neurons tested. Injection of a hyperpolarizing current pulse produced time-dependent rectification in DRG neurons that exhibited Ih, and clonidine blocked this rectification in all intact and transected neurons tested. These results suggest that inhibition of Ih due to alpha 2-adrenoceptor activation contributes to modulation of DRG neuronal activity in rats. On the basis of our findings, we discuss the possible mechanisms whereby sympathetically released norepinephrine modulates the abnormal activity of DRG neuronal cell bodies after nerve injury.  相似文献   

5.
6.
The effect of external calcium concentration ([Ca2+]o) on membrane potential-dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o. In contrast, when photoreceptors were strongly depolarized, the increase in [Ca2+]i was less when [Ca2+]o was reduced. An explanation for these observations comes from an assessment of Ca2+ channel gating in voltage-clamped photoreceptors under changing conditions of [Ca2+]o. Although Ca2+ conductance increased with increasing [Ca2+]o, surface charge effects dictated large shifts in the voltage dependence of Ca2+ channel gating. Relative to the control condition (3 mM [Ca2+]o), 10 mM [Ca2+]o shifted Ca2+ channel activation 8 mV positive, reducing channel open probability over a broad range of potentials. Reducing [Ca2+]o to 1 mM reduced Ca2+ conductance but shifted Ca2+ channel activation negative by 6 mV. Thus the intracellular calcium signals reflect a balance between competing changes in gating and permeation of Ca2+ channels mediated by [Ca2+]o. In mildly depolarized cells, the [Ca2+]o-induced changes in Ca2+ channel activation proved stronger than the [Ca2+]o-induced changes in conductance. In response to the larger depolarizations caused by 80 mM [K+]o, the opposite is true, with conductance changes dominating the effects on channel activation.  相似文献   

7.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

8.
Changes in the kinetic properties of voltage-activated sodium currents (I(Na)) were studied in rat retinal ganglion cells during in vivo differentiation. Whole-cell recordings from cells maintained as retinal slices or whole-mounts were examined using the patch-clamp technique in the perforated patch mode. Voltage-clamp recordings revealed significant ontogenetic modifications in key properties of I(Na) and the present study described for the first time the detailed time course of such alterations. I(Na) was first expressed on embryonic day 17/18 (E17/18). Current density increased during development from an average of -81 pA/pF on E17/18 to a maximum of -747pA/pF on postnatal day 10/12 (P10/12). Simultaneously, the activation of I(Na) shifted towards more negative potentials, reflected by a shift in the potential of half-activation from -14.1 mV on E17/18 to - 37.5 mV on P10/12. No significant changes in these parameters were observed after P10/12. Steady-state inactivation shifted first towards more positive potentials, reflected by a shift in the potential of half-inactivation from -51 mV on E17/18 to -38 mV on P3/5, but shifted back towards more negative values thereafter (-44 mV in the adult). The most striking feature of I(Na) in rat RGCs was a transient slowing of I(Na) kinetics that was never described before. Time to peak and decay time constants increased between E20 and P5, resulting in slow and broad sodium currents within a developmental period that is characterized by intensive synaptogenesis in the target structures of retinal ganglion cells and maximum retinal ganglion cell death. Thereafter, time to peak and decay time constants decreased again to values found before E20, resulting in rapid sodium spikes. In conclusion, sodium currents in rat retinal ganglion cells displayed substantial electrophysiological changes during pre- and postnatal development. These changes in the sodium system had different temporal time patterns, indicating that they may play specific roles during the development of the visual system.  相似文献   

9.
1. By measuring the apparent reversal potential (aErev) of kainate- and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA)-evoked currents associated with changes in extracellular Ca2+ concentration ([Ca2+]e), we have been able to identify embryonic dorsal horn neurons grown in tissue culture that express Ca(2+)-permeable non-N-methyl-D-aspartic acid (NMDA) receptors. 2. The relative expression of Ca(2+)-permeable and Ca(2+)-impermeable non-NMDA receptors varies from cell to cell. This was evident from the range of a ErevS observed for kainate-evoked currents in a 0 mM [Na+]e, 10 mM [Ca2+]e bath. Under these conditions, aErev ranged from -96 to -21 mV, suggesting that the percentage of the non-NMDA receptors on each neuron that are Ca(2+)-permeable is variable. 3. To determine the extent to which the variability in aErev is due to variable receptor expression rather than experimental variability, we compared the effects of changes in [Ca2+]e on kainate-evoked currents and NMDA-evoked currents on the same cells. Assuming that all of the NMDA receptors on each neuron have a similar Ca2+ permeability, this approach provides an index of the sensitivity of our assay system. The reversal potential of NMDA-evoked currents in 10 mM [Ca2+]e ranged from -30 to -7 mV, whereas on the same population of neurons, the aErev of kainate-evoked currents ranged from -92 to -40 mV. 4. The rectification properties of the non-NMDA currents were generally linear or outwardly rectifying in normal bath solution. When the PCa/PCs ratio in 0 mM [Na+]e, 10 mM [Ca2+]e bath solution was assessed as a function of the rectification index in standard bath, a poor correlation was found between Ca2+ permeability and the rectification index. 5. The aErev of kainate-evoked currents was similar to that of cyclothiazide-enhanced AMPA-evoked currents observed on the same cells (-66.5 +/- 18.4 and -64.0 +/- 13.9 mV, mean +/- SD, respectively). This suggests that kainate is primarily activating the AMPA receptor and that the majority of non-NMDA receptors on embryonic dorsal horn neurons in culture are high-affinity AMPA receptors. 6. Immunocytochemical evidence suggests that the AMPA receptor subunits GluR1-4 are expressed to a variable degree from cell to cell in our cultures. We found evidence for low levels of expression of the kainate receptor subunits GluR5-7. The immunocytochemical observations support the physiological data indicating that much of the kainate-evoked current recorded in our experiments can be accounted for by kainate activation of AMPA receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
1. Ca inward current and the corresponding phasic component of tension were measured in frog atrial muscle under voltage-clamp conditions in Na-free (Li) Ringer solution with tetrodotoxin (TTX) added. 2. The quantity of Ca ions entering the cell upon depolarization, delta[Ca]i, was linearly related to peak phasic tension. 3. The voltage dependence of the steady-state inactivation of the Ca-carrying system, f infinity, against voltage yielded similar relationships whether determined directly from variations of Ca inward current or peak phasic tension. The Ca system was almost fully available at potentials more negative than -45 mV and almost fully inactivated at potentials more positive than +10 mV. 4. It was established that the time- and voltage-dependence of Ca current and of phasic tension are directly related. The time constants of Ca activation, tau f, were comparable in the range of membrane potential investigated (-20 to +25 mV), whether determined directly from the decay of Ca current or indirectly from peak phasic tension. 5. It was concluded that the Ca current, ICa, directly activates phasic contraction and that either parameter can be used as an indicator of the kinetics of the Ca-carrying system. Peak phasic tension was used to determine tau f further in the membrane potential range in which interference by other membrane currents renders direct analysis of Ca current difficult. 6. The tau f against voltage relationship determined from phasic tension showed that the inactivation process of the Ca-carrying system is slowest at membrane potentials around -13 mV (tau f = 55 msec) and that the rate of inactivation increases with both increasing and decreasing depolarizations. 7. It is suggested that normal repolarization in frog myocardium depends mainly on the decay of Ca inward current rather than on an increase of outward current.  相似文献   

11.
In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near -50 mV and -200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 microM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5-10 s and relaxed over 40-60 s thereafter. The [Ca2+]i increases showed a voltage threshold near -120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in "conditioning" [Ca2+]i signals that regulate ion channels for stomatal function.  相似文献   

12.
Pre-steady-state transient currents (1986. Nakao, M., and D. C. Gadsby. Nature [Lond.]. 323:628-630) mediated by the Na/K pump were measured under conditions for Na/Na exchange (K-free solution) in voltage-clamped Xenopus oocytes. Signal-averaged (eight times) current records obtained in response to voltage clamp steps over the range -160 to +60 mV after the addition of 100 microM dihydroouabain (DHO) or removal of external Na (control) were subtracted from test records obtained before the solution change. A slow component of DHO- or Na-sensitive difference current was consistently observed and its properties were analyzed. The quantity of charge moved was well described as a Boltzmann function of membrane potential with an apparent valence of 1.0. The relaxation rate of the current was fit by the sum of an exponentially voltage-dependent reverse rate coefficient plus a voltage-independent forward rate constant. The quantity of charge moved at the on and off of each voltage pulse was approximately equal except at extreme negative values of membrane potential where the on charge tended to be less than the off. The midpoint voltage of the charge distribution function (Vq) was shifted by -24.8 +/- 1.7 mV by changing the external [Na] in the test condition from 90 to 45 mM and by +14.7 +/- 1.7 mV by changing the test [Na] from 90 to 120 mM. A pseudo three-state model of charge translocation is discussed in which Na+ is bound and occluded at the internal face of the enzyme and is released into an external-facing high field access channel (ion well). The model predicts a shift of the charge distribution function to more hyperpolarized potentials as extracellular [Na] is lowered; however, several features of the data are not predicted by the model.  相似文献   

13.
Currents carried by Ba2+ through calcium channels were recorded in the whole-cell configuration in isolated frog sympathetic neurons. The effect of surface charge on the apparent saturation of the channel with Ba2+ was examined by varying [Ba2+]o and ionic strength. The current increased with [Ba2+]o, and the I-V relation and the activation curve shifted to more positive voltages. The shift of activation could be described by Gouy-Chapman theory, with a surface charge density of 1 e-/140 A2, calculated from the Grahame equation. Changes in ionic strength (replacing N-methyl-D-glucamine with sucrose) shifted the activation curve as expected for a surface charge density of 1 e-/85 A2, in reasonable agreement with the value from changing [Ba2+]o. The instantaneous I-V for fully activated channels also changed with ionic strength, which could be described either by a low surface charge density (less than 1 e-/1,500 A2), or by block by NMG with Kd approximately 300 mM (assuming no surface charge). We conclude that the channel permeation mechanism sees much less surface charge than the gating mechanism. The peak inward current saturated with an apparent Kd = 11.6 mM for Ba2+, while the instantaneous I-V saturated with an apparent Kd = 23.5 mM at 0 mV. This discrepancy can be explained by a lower surface charge near the pore, compared to the voltage sensor. After correction for a surface charge near the pore of 1 e-/1,500 A2, the instantaneous I-V saturated as a function of local [Ba2+]o, with Kd = 65 mM. These results suggest that the channel pore does bind Ba2+ in a saturable manner, but the current-[Ba2+]o relationship may be significantly affected by surface charge.  相似文献   

14.
Site-directed mutagenesis and chemical modification of specific cysteine amino acid side chains by methanethiosulfonate (MTS) derivatives were combined to elucidate structure/function relationships of the cloned rabbit Na+/glucose cotransporter, SGLT1. Each amino acid in the region (residues 162-173) between putative transmembrane helices IV and V of SGLT1 was replaced individually with Cys. Mutant proteins were expressed in Xenopus laevis oocytes and studied using the two-electrode voltage clamp method. At certain key positions, Cys substitution resulted in 1) a change in the apparent affinity for sugar, 2) an alteration in the voltage dependence of the transient currents, and 3) a sensitivity to inhibition by either the ethylamine (MTSEA) or the ethylsulfonate MTS derivatives. For the three Cys mutants inhibited by MTSEA (F163C, A166C, and L173C), inhibition of steady state transport is related to changes in membrane potential-dependent transitions within the Na+/glucose transport cycle. MTSEA shifted the transient currents of these Cys mutants toward more negative membrane potentials (DeltaV0. 5 = -18 mV for F163C and A166C, -12 mV for L173C). When the mutations were combined to produce double and triple Cys mutants, the degree to which the transient currents were shifted along the membrane potential axis by MTSEA correlated with the number of cysteines. In this way it was possible to manipulate the voltage dependence of the transient currents over a range spanning 91 mV. Examination of the Na+ dependence of the transient currents indicates that a 91-mV shift is equivalent to that caused by a 10-fold reduction in the external Na+ concentration. We conclude that this region has a role in determining the Na+ binding- and voltage-sensing properties of SGLT1 and that it forms an alpha-helix with one surface possibly lining a Na+ pore within SGLT1.  相似文献   

15.
1. Ionic currents of the egg membrane of a certain tunicate. Halocynthia roretzi Drashe, were studied by the voltage-clamp technique. 2. The membrane depolarization beyond -55mV in standard artificial sea water induced mainly transient inward current and slight outward currents, when the holding potential was kept at -99 mV. 3. The transient inward current was composed of two components; the major one showed a faster time course, a more negative critical level of about -55 mV, and a reversal potential around +60 mV and the minor one showed a slower time course, a less negative critical level o -10 mV, and no definite reversal potential. 4. The major component became maximum at about -25 mV with the peak time of 6-9 msec at 15 degrees C, and the maximum currents ranged from 0-5 to 1-5 X 10(-5) A/cm2. 5. The major component of the inward current was abolished by the replacement of Na with choline or Tris or Cs ions, while it was almost unaltered by the replacement with Li. The minor component was independent of Na concentration in the external solution. 6. The major component showed the activation and inactivation identical with those of Na current of other excitable membranes. A conditioning depolarization over -90 mV inactivated the Na current and the half inactivation of the major inward current was obtained by a conditioning pulse to -56 mV, when the pulse duration was 400 msec and the temperature was at 15 degrees C. 7. The time course of the Na current was formulated with m and h parameters in the following equations: (see article). 8. The kinetic parameters taum and tauh of egg Na current were calculated and compared with those of the squid axon. The potential dependence of taum and tauh was almost identical with that of the axon, but the absolute values of both taum and tauh were ten- to twentyfold larger than those of the axon in any range of the membrane potential. 9. The temperature depdence of the kinetic parameters taum, tauh and of the chord conductance gNa was studied. The Q10's for taum and tauh were both 4-0, while the Q10 for gNa was 2-0 in the temperature range from 5 to 20 degrees C. 10. The outward and inward rectifying conductances of egg membrane were remarkably activated at the potential level above +100 mV and below -70 mV respectively in standard artificial sea water. Both increased currents were subsequently subject to inactivation. 11. It was suggested that Na, Ca, K inward rectifying and K outward rectifying conductances all exist separately in the egg cell membrane and the Na current was essentially identical with that through the Na channel in other excitable membranes.  相似文献   

16.
This study examined the ionic mechanism of ibutilide, a class III antiarrhythmic in clinical use, on freshly isolated human atrial cells. Cells had resting potentials of -71.4 +/- 2.4 mV, action potentials with overshoot of 36.8 +/- 1.8 mV, duration of 265 +/- 89 msec at 90% repolarization and slow repolarization (n = 16). Ibutilide, at 10(-7) M, markedly increased action potential duration. Four types of outward currents were detected: Ito, Iso, a delayed rectifier and IK1. Ibutilide had no inhibitory effect on these outward currents at 10(-7) M (n = 28). In K(+)-free solutions and -40 mV holding potential, mean peak inward current at 20 mV was -1478 +/- 103 pA (n = 12). Ibutilide increased this current to -2347 +/- 75 pA at 10(-7) M, with half maximal effect (Kd) of 0.1 to 0.9 nM between -10 and +40 mV (n = 21). At similar concentrations, the drug increased APD, with Kd of 0.7 and 0.23 nM at 70 and 90% repolarization, respectively (n = 8). Ibutilide shifted the mid-point of the steady-state inactivation curve from -21 to -12.2 mV (n = 6), and reduced current decline during repetitive depolarization (n = 5). The drug induced inward current was carried by Na+o through a nifedipine inhibited inward channel because Na+o removal eliminated the effect, and nifedipine abolished the inward current and the drug induced APD prolongation. We propose that a Na+ current through the L-type Ca++ channel mediates ibutilide's potent clinical class III antiarrhythmic action.  相似文献   

17.
3-Benzyl-3-ethyl-2-piperidinone (3-BEP) belongs to a family of compounds that includes alpha- substituted gamma-butyrolactones, gamma-thiobutyrolactones, 2-pyrrolidinones and hexahydro-2H-azepin-2-ones. Many of these drugs exhibit potent in vivo anticonvulsant activity in mice. Previous electrophysiological studies demonstrated that they potentiate gamma-aminobutyric acid- (GABA) mediated chloride currents. This GABAA receptor modulation was thought to be the main mechanism of anticonvulsant activity. We report that 3-BEP also modulates sodium channels. It decreased sodium currents in cultured rat hippocampal neurons in a voltage- and concentration-dependent manner. The drug's apparent affinity increased as neurons were depolarized. At a holding potential of -60 mV, the apparent IC50 was 487 microM. This concentration is comparable to its EC50 for GABAA modulation (575 microM). Current blockade occurred over all activation voltages tested. The steady state inactivation curve was shifted by 600 microM 3-BEP from V50 = -65.3 mV to -72.0 mV, and recovery from inactivation was slowed from tau = 4.9 to 12.8 msec. Sodium current inhibition was not observed for three related compounds, suggesting a degree of chemical specificity for this activity. We conclude that in addition to its known effects on GABAA receptors, 3-BEP modulates sodium channels. Therefore this compound may prevent seizures by both enhancing inhibition and diminishing neuronal excitability.  相似文献   

18.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We examined the electrophysiological effect of pituitary adenylate cyclase activating polypeptide (PACAP) in isolated Xenopus laevis oocytes in vitro. In conventional two-electrode voltage clamp experiments, PACAP (1-10 microM) activated an inward rectifier current at membrane potentials more negative than -60 mV without causing any significant change in currents at potentials more positive than -60 mV both in the follicle-enclosed oocyte and in the defolliculated oocyte. This current reversed at -22.5 mV, close to the theoretical value of Cl- equilibrium potential and the reversal potential of this current was shifted positively by reducing [Cl-]o. This current was blocked by Cl- channel blocker SITS and Ba2+. Furthermore, VIP and adenylate cyclase activator forskolin did not elicit the currents. In conclusion, PACAP elicited the hyperpolarization-activated Cl- current in Xenopus laevis oocytes. This current may modulate the membrane potential of the oocyte, thereby affecting the oocyte physiology.  相似文献   

20.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at -60 mV, ANG II (10 microM) or ATP (100 microM) induced an oscillatory inward current. Caffeine (5 mM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl- ions (Ecl = -2.1 mV) and was shifted towards more positive values in low-Cl- solutions. Niflumic acid (10-50 microM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i. Niflumic acid (25 microM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 microM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 microM) or nifedipine (1 microM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3-mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号