首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
For studies of mass-dependent fractionation of calcium isotopes in natural materials, the 48Ca/42Ca ratio is a superior choice to the conventionally measured 44Ca/40Ca ratio for two important reasons. These are (1) mass-dependent fractionation can be determined free from the effects of inherited or ingrown radiogenic 40Ca and (2) this ratio increases the spread of measured isotopic masses by 50%, resulting in statistically better resolution of fractionation, assuming similar precision. A third, though strictly technical, advantage is the inherent ability of a mass spectrometer to measure ratios close to unity (48Ca/42Ca) more precisely than very small or large ratios (44Ca/40Ca). However, because of the very low natural abundance of both 48Ca and 42Ca, their ratio has been very difficult to measure, the only attempt so far being on a high mass resolution MC-ICP-MS with a precision of 0.33%. We report here determination of the 48Ca/42Ca ratio by the more commonly available and user-friendly multi-collector TIMS using a 43Ca-46Ca double-spike, with a significantly better precision of 0.18% (2s). The 48Ca/40Ca or 44Ca/40Ca ratio can also be measured in the same mass spectrometer run to provide complementary information on any radiogenic component.  相似文献   

2.
Calcium Isotopic Composition of Various Reference Materials and Seawater   总被引:1,自引:0,他引:1  
A compilation of δ44/40Ca (δ44/40Ca) data sets of different calcium reference materials is presented, based on measurements in three different laboratories (Institute of Geological Sciences, Bern; Centre de Géochimie de la Surface, Strasbourg; GEOMAR, Kiel) to support the establishment of a calcium isotope reference standard. Samples include a series of international and internal Ca reference materials, including NIST SRM 915a, seawater, two calcium carbonates and a CaF2 reference sample. The deviations in δ44/40Ca for selected pairs of reference samples have been defined and are consistent within statistical uncertainties in all three laboratories. Emphasis has been placed on characterising both NIST SRM 915a as an internationally available high purity Ca reference sample and seawater as representative of an important and widely available geological reservoir. The difference between δ44/40Ca of NIST SRM 915a and seawater is defined as -1.88 O.O4%o (δ44/42CaNISTSRM915a/Sw= -0.94 0.07%o). The conversion of values referenced to NIST SRM 915a to seawater can be described by the simplified equation δ44/40CaSa/Sw44/40CaSa/NIST SRM 915a - 1.88 (δ44/42CaSa/Sw44/42CaSa/NIST SRM 915a - 0.94). We propose the use of NIST SRM 915a as general Ca isotope reference standard, with seawater being defined as the major reservoir with respect to oceanographic studies.  相似文献   

3.
A new method has been developed for the simultaneous determination of Pb abundance and Pb isotopic composition with high precision and accuracy for small test portion masses by thermal ionisation mass spectrometry. In this method, a 205pb-204pb double spike is added to samples prior to the chemical separation of Pb, and the isotopic composition of the spike-sample mixture is determined rigorously by the double spike technique using a 207Pb-204Pb spike. The isotopic composition and concentration of Pb in the sample are then obtained by utilising the principle of isotope dilution. Using this technique, replicate determinations of Pb from NIST SRM 981 and GSJ JP-1 (peridotite; 0.07 μg g−1 Pb) were performed. The measured concentration and isotopic data were identical, within uncertainty, to published data or to data that were determined independently in this study. The application of this method to U-Pb dating and the determination of the "initial" Pb isotopic composition was also tested. Lead isotopic compositions and the concentrations of Pb, Th and U were determined for a single batch of samples, through the addition of 205pb-204pb, 230Th and 235U spikes to samples prior to chemical separation. Also in these experiments, we confirmed that this routine gives accurate data for Pb, Th and U concentrations and Pb isotopic compositions.  相似文献   

4.
A proposal is made to standardise the reporting of Ca isotope data to the δ44Ca/40Ca notation (or δ44Ca/42Ca) and to adopt NIST SRM 915a as the reference standard.  相似文献   

5.
We have developed a new chemical procedure for the quantitative separation of molybdenum (Mo) and rhenium (Re) from a wide variety of geological samples. A single pass anion exchange separation provided complete recovery of pure Mo and Re in a form that was ideal for subsequent isotope and abundance determination by multi-collector inductively coupled plasma-mass spectroscopy (MC-ICP-MS). An enriched 100Mo-97Mo solution, mixed with the sample before digestion, enabled natural mass-dependant isotopic fractionation of Mo to be determined with an external reproducibility of < 0.12‰ (δ98Mo/95Mo, 2 s ). Determination of the concentration of Mo and Re in the same sample was achieved by isotope dilution, with instrumental mass-fractionation of Re being corrected by the simultaneous measurement of the 191Ir/193Ir ratio. We have applied the new procedure to a variety of samples, including seawater, basalt and organic-rich mudrock. The procedure is ideally suited to palaeoredox studies requiring the precise determination of the Mo isotope composition and the Re/Mo ratio from the same sample.  相似文献   

6.
ABSTRACT
The mineralogy and isotope geochemistry of carbonate minerals in the Coorong area are determined by the water chemistry of different depositional environments ranging from seawater to evaporitically modified continental water. The different isotopic compositions of coexisting calcite and dolomite suggest that each of the above two minerals was formed from water of composition and origin unique to that specific mineral. In addition, the dolomite was not formed by simple solid state cation exchange.
The occurrence of two types of dolomite was shown by isotope analysis and SEM observations. The dolomite, which is isotopically light (δ13C = -1 to -2% 0 ; δ18O=+3 to +5%0) and of fine grain size (˜ 0·5 μm) probably precipitated under the influence of evaporitically modified continental water. Coarser grained dolomite (up to 4 μm) is isotopically heavier (δ13C=+3 to +4%0; δ18O=+5 to + 6%0) contains Mg in excess of Ca and was formed in or close to equilibrium with atmospheric CO2 probably by the dolomitization of aragonite.  相似文献   

7.
The carbon (δ13 C) and oxygen (δ18O) isotopic composistion in mollusc shells in mainly determined by the isotopic composition of water and dissolved bicarbonate. The δ18O values of water show a good correlation with the salinity of the Baltic. This correlation served as a basis for reconstructing palaeosalinity and for stratifying the marine sediments according to the δ18O values of the carbonate skeletons of subfossil shells. The δ13C values in shells are mainly determined by the isotopic composition of land-originating bicarbonate, especially in the carbonate skeleton of Lymnaea balthica , which inhabits the immediate coastal zone. According to the δ18O data, salinity in the investigated area (the coastal area of W and NW Estonia) was highest (about 9–11%) during the Littorina stage. The Limnae a stage had, in general, a salinity similar to the contemporary one, but during some phases possibly exceeding it by 2–3%.  相似文献   

8.
A direct method for the determination of lead isotopic ratios by laser ablation-inductively coupled plasma-quadrupole mass spectrometry (LA-ICP-QMS) is presented. Samples of lake sediments were ground and pressed as pellets before being analysed. Mass bias was corrected by analysing an external calibration sample manufactured with pure silica doped with NIST SRM 981 solution. The efficiency of the mass bias correction was checked by comparing the ICP-MS data with lead isotopic ratios determined by thermal ionisation mass spectrometry (TIMS). The average long term reproducibilities were 0.40%, 0.40%, 0.20% and 0.30% (RSD) respectively for the 206Pb/204Pb, 207Pb/204Pb, 206Pb/207Pb and 208Pb/206Pb ratios. The method was applied to the study of lake sediment samples, in order to determine the amount and origin of historical contamination by lead.  相似文献   

9.
Zachariah 《地学学报》1998,10(6):312-316
A marble band in the ≈ 2.75 Gyr old Ramagiri schist belt in the Dharwar craton of south India gave a Pb–Pb age of 3.075 ± 0.095 Gyr. The geochemical data, including high Sr and low Ba and Mn indicate seawater origin for the parent rock, and that there was insignificant geochemical exchange between the marble and the surrounding rocks. The calculated initial Nd isotopic composition and μ1 indicate an older continental crustal source for the Nd and Pb. The initial 87Sr/86Sr of the marble is 0.70128, which is higher than the calculated mantle value at ≈ 3 Ga. Although pre-3 Gyr old marine carbonate rocks are thought to be buffered by mantle Sr, the Ramagiri marble contains evolved, crustal Sr. Despite this, the marble has the lowest measured 87Sr/86Sr among carbonates and represents one of the least radiogenic periods in seawater Sr isotope composition.  相似文献   

10.
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO42-, δ18O and δD. The baselines for the Cl- concentration and δ18O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18O anomalies gives results of up to 80 % in sand, and shows that the δ18O baseline is not consistent with the Cl" baseline. The δ18O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18O are responsible for the increase in the δ18O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation.  相似文献   

11.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment.  相似文献   

12.
A double spike for osmium analysis of highly radiogenic samples   总被引:1,自引:0,他引:1  
Geologic samples containing highly radiogenic Os (molybdenites and low-level, highly radiogenic (LLHR) samples) have no internal means by which to correct for mass fractionation during isotopic measurement by mass spectrometry. We describe a double spike for use with highly radiogenic samples, created by combining isotopically enriched 188Os and 190Os. Spiking molybdenite and other highly radiogenic minerals with this tracer allows for a fractionation correction, as well as a more reliable determination of common Os relative to analysis using single spikes.

The precise isotopic composition of the double spike is determined by a calibration against natural Os, in which two separate measurements are necessary: one each for the pure double spike and the spike–standard mixture. An estimate of the true composition of the spike is obtained by least squares approximation, and the errors are obtained by Monte Carlo methods. Sample analyses are then much more straightforward than the calibration because isotopic compositions of all components are known a priori.

Results obtained with a mixed Re-double Os spike demonstrate an improved reproducibility over individual 185Re and 190Os spikes. For an Archean in-house molybdenite standard we now observe a reproducibility of 0.08%. The ability to make a fractionation correction is essential for Os measurements made by ion counting. With the double Os spike, young samples and those with low Re contents (i.e., LLHR) can now be accurately analyzed. The 188Os–190Os double spike also allows a determination of the common Os contents of highly radiogenic samples. Common Os is poorly determined for ancient samples with high concentrations of 187Os, which fortunately are not sensitive to estimates of common Os. Common Os can be reasonably well determined for younger samples and those with low Re contents. We report a common Os concentration of 0.4±0.1 ppb for an 11 Ma molybdenite. Consideration of common Os content is important for age determination of young samples and LLHR samples, and is not possible by other published means of Os analysis.  相似文献   


13.
This compilation report describes the field location, mineralogy, preparation and homogeneity testing of two new GIT-IWG reference materials: Whin Sill dolerite (WS-E) from England and Pitscurrie microgabbro (PM-S) from Scotland. The elemental composition of these two new reference materials has been established by an international cooperative analysis programme involving participation by 104 laboratories. A full assessment of these analytical results is presented, from which working values have been derived for the major elements as well as for 45 trace elements in WS-E and 44 trace elements in PM-S. Furthermore, isotopic ratios are presented for both samples, particularly for 87Sr/86Sr and 143Nd/144Nd.  相似文献   

14.
Data are reported for rare earth elements (REE) in three geological glass reference materials (BIR-1G, BHVO-2G and BCR-2G) using a UV (266 nm) laser ablation ICP-MS system and the classical (HF-HClO4) acid decomposition method, followed by conventional nebulisation ICP-MS. External calibration of laser ablation analyses was performed using NIST SRM reference materials with internal standardisation using 29Si and 44Ca. Replicate analyses of reference basaltic glasses yielded an analytical precision of 1-5% (RSD) for all the elements by solution ICP-MS and 1-8% (RSD) by laser ablation ICP-MS. The relative differences between the REE concentrations measured by solution and laser ablation ICP-MS compared with the reference values were generally less than 11 % for most elements. The largest deviations occurred for La determined by solution ICP-MS in BIR-1G. The results of both solution and laser ablation ICP-MS agreed well, generally better than 7%, with the exception of La, Pr and Sm in BIR-1G. The measured REE laser ablation data for BIR-1G, BHVO-2G and BCR-2G agreed with the previously published data on these basaltic reference glasses, within a range of 0-10% for most elements. No significant influences were observed for the predicted spectral interferences on some REE isotopes in the analysis of basaltic glasses.  相似文献   

15.
Strontium isotopic composition is a potentially powerful tracer in studies of kimberlitic rocks but the results from even the most carefully collected and stringently prepared bulk-rock samples are still hampered by contamination and alteration effects. Here we describe a LA-MC-ICP-MS technique which can obtain accurate, high precision Sri ratios from 50–150 μm kimberlitic groundmass perovskite without requiring time-consuming mineral separation procedures. Since perovskite is a robust magmatic phase with an extremely low Rb/Sr ratio, the effects of late-stage crustal contamination, post-emplacement alteration and age correction are minimised and results are more representative of primary melt compositions, while additionally preserving powerful grain-scale spatial and textural information. We demonstrate that the adopted protocol overcomes isobaric interferences from Kr+, Rb+, Er2+ and Yb2+, and that Ca dimers and Ca argides do not detectably affect the quality of 87Sr/86Sr ratios produced. To illustrate the utility of the technique, contrasting bulk-rock and in situ perovskite results from eleven Proterozoic kimberlites are documented.  相似文献   

16.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   

17.
Boron Isotopic Analysis of Proposed Borosilicate Mineral Reference Samples   总被引:2,自引:0,他引:2  
This brief contribution presents new boron isotopic data for a set of proposed borosilicate reference minerals, most of which are described in the companion paper by Dyar et al.2001. The results for a variety of minerals (tourmalines, danburite, prismatine, serendibite, ferroaxinite and a Li mica) show that it is generally possible to reproduce the 11 B/10 B ratio within ± 0.5 per mil with replicate chemistry and mass spectrometry over long time spans. Because the accuracy of boron isotopic analysis is commonly determined by reference to secondary standards, it is suggested that some of the samples used in this study be adopted for interlaboratory comparisons and for quality control on boron isotopic analyses produced by a variety of analytical methods.  相似文献   

18.
Determination of the Absolute Hydrogen Isotopic Ratio of V-SMOW and SLAP   总被引:1,自引:0,他引:1  
By mixing 1H2O and 2H2O, both with accurately known purity, samples were prepared with 2H/1H ratios close to those of the international isotopic water standards: V-SMOW and SLAP. A mass spectrometrical comparison of these calibration samples with the actual water standards revealed:
2H/1H of V-SMOW = (155.95 ± 0.08) × 10−6
2H/1H of SLAP = (89.12 ± 0.07) × 10−6
δ2HV-SMOW(SLAP) =−428.5 ± 0.5 %  相似文献   

19.
Stable carbon and oxygen isotopic compositions of essentially unmetamorphosed Archean (> 2.6 Gyr old) cherts and carbonates of the Dharwar Sequence of southern India, from the northernmost part of the Dharwar-Shimoga supracrustal belt (Kalche and Nagargali), have been determined. The cherts from the Nagargali area, which preserve oolitic texture and cryptocrystalline silica, show highly enriched δ18O values ranging from 28 to 31.4%o relative to SMOW. Such values are the highest yet reported from Archean nondetrital sediments, but are similar to those of modern marine cherts. On the assumption of a seawater δ18O of 0%0, calculation of temperature based on the maximum δ18O value of 31.4%0 yields a value of 40°C. This is significantly less than 70–80°C reported for the Archean oceans based on cherts and chert-phosphate pairs. Diagenetically recrystallized microcrystalline chert-dolomite pairs of Kalche area exhibit a range of oxygen isotopic ratios similar to those reported for Archean cherts and carbonates from other parts of the world. The temperature of diagenesis is estimated to be about 68°C.  相似文献   

20.
The δ13Ccarb and 87Sr/86Sr secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local δ13Ccarb fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative δ13Ccarb excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590–544 Myr interval, and two age-groups at 660–610 and 740–690 Myr can be resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号