首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated a 62‐year‐old man who had mild clinical features of myotonia congenita. He was found to have a novel heterozygous G‐to‐A nucleotide substitution at position 1652 in exon 15 of the CLCN1 gene. Clinicogenetic studies performed on his family revealed that his asymptomatic son also shared the mutation. We conclude that a novel chloride channel mutation (G1652A) has caused a mild form of autosomal‐dominant myotonia congenita (Thomsen disease) in this family. Muscle Nerve, 2010  相似文献   

2.
At least 50 disease-causing mutations in the skeletal muscle voltage-gated chloride channel gene (CLCN1), almost all of which originate from Caucasian families, have been identified. We investigated a Japanese family with Thomsen's myotonia congenita that included 16 affected individuals (8 men and 8 women) through five generations. Polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) screening of 11 members showed an aberrant conformer in exon 13 of CLCN1 complementary DNA (cDNA) in 8 affected and 1 unaffected members. By sequence analysis, we identified a C-to-A transition at nucleotide position 1438, resulting in a substitution of proline for threonine at amino acid position 480 (P480T), the same position of the original mutation (P480L) in Thomsen's disease. The P480T mutation was novel and absent in 100 normal controls. Seven of the 8 affected individuals were heterozygous; another, from affected parents, was homozygous. Clinically, myotonia in the homozygous patient was more severe than that in heterozygous patients, probably due to the gene dosage effect. On a long-train nerve-stimulation test at a rate of 3 Hz, M-wave responses in the homozygous patient showed marked decrement followed by recovery. In contrast, the heterozygous patients showed just a slight decrement or no changes, and none of 2 patients with myotonic muscular dystrophy or 2 normal controls revealed any decrement. Thus, the long-train nerve-stimulation test at a low stimulus frequency may be a useful tool to assess the disease-severity/genotype relationship in myotonia congenita.  相似文献   

3.
The aims of this study were to (1) characterize the clinical phenotype, (2) define the causative mutation, and (3) correlate the clinical phenotype with genotype in a large consanguineous Arab family with myotonia congenita. Twenty‐four family members from three generations were interviewed and examined. Genomic DNA was extracted from peripheral blood samples for sequencing the exons of the CLCN1 gene. Twelve individuals with myotonia congenita transmitted the condition in an autosomal dominant manner with incomplete penetrance. A novel missense mutation [568GG>TC (G190S)] was found in a dose‐dependent clinical phenotype. Although heterozygous individuals were asymptomatic or mildly affected, the homozygous individuals were severely affected. The mutation is a glycine‐to‐serine residue substitution in a well‐conserved motif in helix D of the CLC‐1 chloride channel in the skeletal muscle plasmalemma. A novel mutation, 568GG>TC (G190S) in the CLCN1 gene, is responsible for autosomal dominant myotonia congenita with a variable phenotypic spectrum. Muscle Nerve, 2009  相似文献   

4.
Nondystrophic myotonias are characterized by muscle stiffness triggered by voluntary movement. They are caused by mutations in either the CLCN1 gene in myotonia congenita or in the SCN4A gene in paramyotonia congenita and sodium channel myotonias. Clinical and electrophysiological phenotypes of these disorders have been well described. No concomitant mutations in both genes have been reported yet. We report five patients from three families showing myotonia with both chloride and sodium channel mutations. Their clinical and electrophysiological phenotypes did not fit with the phenotype known to be associated with the mutation initially found in SCN4A gene, which led us to screen and find an additional mutation in CLCN1 gene. Our electrophysiological and clinical observations suggest that heterozygous CLCN1 mutations can modify the clinical and electrophysiological expression of SCN4A mutation.  相似文献   

5.
Phenotypic variability in myotonia congenita   总被引:3,自引:0,他引:3  
Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed.  相似文献   

6.
Myotonia congenita is an inherited muscle disease present from childhood that is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness; moreover, skeletal striated muscle groups may be involved. Myotonia congenita occurs due to chloride (Cl) channel mutations that reduce the stabilizing Cl conductance, and it is caused by mutations in the CLCN1 gene. This paper describes four patients from two different healthy consanguineous Turkish families with muscle stiffness and easy fatigability. A genetic investigation was performed. Mutation analyses showed a homozygous p.Tyr150* (c.450C > A) mutation in patients 1, 2 and 3 and a homozygous p.Leu159Cysfs*11 (c.475delC) mutation in patient 4 in the CLCN1 gene. These mutations have never been reported before and in silico analyses showed that the mutations were disease causing. They may be predicted to cause nonsense-mediated mRNA decay. Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita.  相似文献   

7.
Myotonia congenita is an inherited muscle disorder sustained by mutations in the skeletal muscle chloride channel gene CLCN1. Symptoms vary from mild to severe and generalized myotonia and worsen with cold, stressful events and hormonal fluctuations. Here we report the case of a young woman who sought medical attention because of subacute onset of diffuse and severe limb myotonia. CLCN1 gene sequencing showed a heterozygous transversion (T550M), two polymorphisms and one silent mutation. Thyroid function screening revealed severe hypothyroidism. She was placed on l-thyroxine replacement therapy which dramatically improved myotonia. We conclude that hypothyroidism unmasked a genetically determined, clinically asymptomatic chloride channelopathy. Diagnostic work-up in patients with clinically isolated myotonia should not be limited to genetic screening of non-dystrophic or dystrophic myotonias. Considering the high prevalence of hypothyroidism in females, systematic thyroid function screening by looking for additional hypothyroid symptoms and serum TSH levels measurement is mandatory in these patients.  相似文献   

8.
OBJECTIVE: To determine the functional consequences of missense mutations within the skeletal muscle chloride channel gene CLCN1 that cause myotonia congenita. BACKGROUND: Myotonia congenita is a genetic muscle disease associated with abnormalities in the skeletal muscle voltage-gated chloride (ClC-1) channel. In order to understand the molecular basis of this inherited disease, it is important to determine the physiologic consequences of mutations found in patients affected by it. METHODS: The authors used a mammalian cell (human embryonic kidney 293) expression system and the whole-cell voltage-clamp technique to functionally express and physiologically characterize five CLCN1 mutations. RESULTS: The I329T mutation shifted the voltage dependence of open probability of ClC-1 channels to the right by 192 mV, and the R338Q mutation shifted it to the right by 38 mV. In addition, the I329T ClC-1 channels deactivated to a lesser extent than normal at negative potentials. The V165G, F167L, and F413C ClC-1 channels also shifted the voltage dependence of open probability, but only by +14 to +20 mV. CONCLUSIONS: The functional consequences of these mutations form the physiologic argument that these are disease-causing mutations and could lead to myotonia congenita by impairing the ability of the skeletal muscle voltage-gated chloride channels to maintain normal muscle excitability. Understanding of genetic and physiologic defects may ultimately lead to better diagnosis and treatment of patients with myotonia congenita.  相似文献   

9.
Myotonia congenita is a genetic muscle disorder characterized by clinical and electrical myotonia, muscle hypertrophy, and stiffness. It is inherited as either autosomal-dominant or –recessive, known as Thomsen and Becker diseases, respectively. These diseases are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease and causes more severe muscle stiffness and pain. Mutations in the muscular voltage-dependent chloride channel gene (CLCN1), located at 7q35, have been found in both types. We report here the case of a Moroccan consanguineous family with a myotonic autosomal-recessive condition in two children. The molecular studies showed that the patients reported here are homozygous for mutation p.Gly482Arg in the CLCN1 gene. The parents were heterozygote carriers for mutation p.Gly482Arg. This diagnosis allowed us to provide an appropriate management to the patients and to make a genetic counselling to their family.  相似文献   

10.
Abstract. We have performed genetic screening on the skeletal muscle chloride channel gene (CLCN1) in Taiwanese population. A total of four patients with myotonia congenita (MC) together with 106 normal individuals were examined. All 23 exons of the CLCN1 gene were analysed by direct sequencing of PCR products to detect the nucleotide changes. Five mutations and three polymorphisms were identified in this study. Among these, three missense mutations (S471F, P575S, D644G) and one polymorphism (T736I) are novel and could be unique to the Taiwanese. In addition, a previously documented recessive G482R mutation was identified in a heterozygous patient and his nonsymptomatic father, indicating that this mutation might indeed function recessively or dominantly with incomplete penetrance. In conclusion, this is the first report of MC in Taiwan with proven CLCN1 gene mutations and showing high molecular heterogeneity in Taiwanese MC patients.  相似文献   

11.
Multiple mutations in the CLCN1 gene coding for the voltage-gated chloride channel have been documented to cause myotonia congenita. We report a kindred featuring an index patient who possesses 2 copies of a dominantly inherited mutated CLCN1 allele with a resulting novel phenotypic presentation. The index patient is a boy who presented initially for evaluation at the age of 5 years with a 2-year history of gait problems. Both parents and 3 male siblings were entirely well. Examination revealed a striking diffuse muscular hypertrophy, diffuse mild to moderate weakness, Gower sign, percussion, and grip myotonia. Electromyography confirmed myotonia, and molecular analysis revealed 2 copies of the T310M mutation on the CLCN1 gene. Testing of family members revealed a normal neurological examination without clinical myotonia in all and electromyographic evidence of myotonia and a single copy of the T310M mutation in both parents and 2 siblings. Our kindred is the initial demonstration of the dosage effect of a dominant mutated allele in the CLCN1 gene.  相似文献   

12.
We investigated the skeletal muscle voltage-gated chloride channel gene (CLCN1) in two unrelated Japanese patients with Becker's myotonia congenita. The non-myotonic parents of each patient were consanguineous. The proband of each family shares generalized myotonia, transient weakness after rest, and leg muscle hypertrophy. However, the disease severity related to the degree of myotonia differed, even in view of the response to long train nerve stimulation tests. CLCN1 gene analysis revealed a novel Ala659Val missense mutation identified to be homozygous in the more severe patient, while a novel Gln445Stop nonsense mutation was present in the other patient. Both mutations were absent in 90 Japanese normal controls. This is the first report of Japanese cases of Becker's myotonia congenita with CLCN1 gene mutations.  相似文献   

13.
We describe two Chinese families with a mild form of the myotonia congenita due to novel chloride channel (ClCN1) mutations. In one case, heterozygous I553F and H555N mutations were found. The patient shared the I553F mutation with his healthy father, and his mother had a history of mild myotonia when she was younger. In another family, autosomal dominant myotonia congenita was due to a L844F change. The physiological effects of the mutations were examined by using the two-electrode voltage-clamp technique after expression of the channels in Xenopus oocytes. All mutations drastically shifted the voltage required for half-maximal activation, more under conditions mimicking the homozygous situation, than under conditions mimicking the heterozygous situation. The larger effect was seen in the compound heterozygous situation combining the I553F and the H555N mutations. Our data suggest that myotonia congenita caused by CLCN1 mutations in Chinese have similar variable features to those found in the West.  相似文献   

14.
Kornblum C, Lutterbey GG, Czermin B, Reimann J, von Kleist‐Retzow J‐C, Jurkat‐Rott K, Wattjes MP. Whole‐body high‐field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita.
Acta Neurol Scand: 2010: 121: 131–135.
© 2009 The Authors Journal compilation © 2009 Blackwell Munksgaard. Background – Muscle magnetic resonance imaging (MRI) is the most sensitive method in the detection of dystrophic and non‐dystrophic abnormalities within striated muscles. We hypothesized that in severe myotonia congenita type Becker muscle stiffness, prolonged transient weakness and muscle hypertrophy might finally result in morphologic skeletal muscle alterations reflected by MRI signal changes. Aim of the study – To assess dystrophic and/or non‐dystrophic alterations such as fatty or connective tissue replacement and muscle edema in patients with severe recessive myotonia congenita. Methods – We studied three seriously affected patients with myotonia congenita type Becker using multisequence whole‐body high‐field MRI. All patients had molecular genetic testing of the muscle chloride channel gene (CLCN1). Results – Molecular genetic analyses demonstrated recessive CLCN1 mutations in all patients. Two related patients were compound heterozygous for two novel CLCN1 mutations, Q160H and L657P. None of the patients showed skeletal muscle signal changes indicative of fatty muscle degeneration or edema. Two patients showed muscle bulk hypertrophy of thighs and calves in line with the clinical appearance. Conclusions – We conclude that (i) chloride channel dysfunction alone does not result in skeletal muscle morphologic changes even in advanced stages of myotonia congenita, and (ii) MRI skeletal muscle alterations in myotonic dystrophy must be clear consequences of the dystrophic disease process.  相似文献   

15.
Decrement of the compound muscle action potential (CMAP) during 10-HZ repetitive nerve stimulation is thought to be an unusual finding in dominant myotonia congenita, and has not previously been reported in patients with the genetically verified disorder. It was the purpose of the present study to elucidate the relation between decrement and CLCN1 mutation type in myotonia congenita. Decrement and genotypes were studied in eight Danish families with myotonia congenita. Six patients with the known dominant mutation P480L had decrements of 30-84%. Patients heterozygous for the R894X mutation had decrements of 20-47%. Three novel CLCN1 mutations (two dominant and one recessive) were found segregating with the Thomsen/Becker phenotypes. In families with the novel dominant mutations M128V and E193K, decrement was absent in all family members tested. In conclusion, CMAP decrement may be pronounced in dominant myotonia congenita, and the presence of decrement is related to mutation type.  相似文献   

16.
Myotonia congenita is an inherited muscle disorder caused by mutations in the CLCN1 gene, a voltage-gated chloride channel of skeletal muscle. We have studied 48 families with myotonia, 32 out of them carrying mutations in CLCN1 gene and eight carry mutations in SCN4A gene. We have found 26 different mutations in CLCN1 gene, including 13 not reported previously. Among those 26 mutations, c.180+3A>T in intron 1 is present in nearly one half of the Spanish families in this series, the largest one analyzed in Spain so far. Although scarce data have been published on the frequency of mutation c.180+3A>T in other populations, our data suggest that this mutation is more frequent in Spain than in other European populations. In addition, expression in HEK293 cells of the new missense mutants Tyr137Asp, Gly230Val, Gly233Val, Tyr302His, Gly416Glu, Arg421Cys, Asn567Lys and Gln788Pro, demonstrated that these DNA variants are disease-causing mutations that abrogate chloride currents.  相似文献   

17.
目的 探讨先天性肌强直一家系和散发患者一例的临床、电生理、基因学特点。方法 对先天性肌强直的一家系和一例散发的患者进行详细的临床资料搜集,对家系先证者以及相关的亲属进行CLCN1和SCN4A基因测序。结果 家系中3代共有7例患者,其中5例患者以及一例无症状的家系成员接受了基因检测,结果发现5例患者携带CLCN1 A298T突变。在散发的患者中发现了S723R错义杂合突变。结论 CLCN1基因A298T突变是家系中先天性肌强直患者的致病突变,而S723R是否为散发患者的致病突变需要进一步明确。  相似文献   

18.
Muscle channelopathies caused by mutations in the SCN4A gene that encodes the muscle sodium channel are transmitted by autosomal‐dominant inheritance. We report herein the first cases of homozygous patients for sodium channel mutations responsible for paramyotonia congenita (I1393T) or hypokalemic periodic paralysis (R1132Q). A parallel was drawn between this unprecedented situation and that of myotonia congenita by including patients homozygous or heterozygous for the CLCN1 I556N channel mutation, which is known for incomplete dominance and penetrance. Standardized electromyographic (EMG) protocols combining exercise and cold served as provocative tests to compare homozygotes with heterozygotes for each of the three mutations. Surface‐recorded compound muscle action potentials (CMAPs) were used to monitor muscle electrical activity, and myotonic discharges were evaluated by needle EMG. In heterozygous patients, exercise tests disclosed abnormal patterns of CMAP changes, which matched those previously described for similar dominant sodium and chloride channel mutations. Homozygotes showed much more severe clinical features and CMAP changes. We hypothesized that the presence of 100% defective ion channels in the homozygotes could account for the most severe phenotype. This suggests that the severity of muscle channelopathies depends both on the degree of channel impairment caused by the mutation and on the number of mutant channels engaged in the pathophysiological process. Overall, this study has practical consequences for the diagnosis of muscle channelopathies and raises new questions about their pathophysiology. Muscle Nerve, 2010  相似文献   

19.
目的探讨先天性肌强直一家系和散发患者一例的临床、电生理、基因学特点。方法对先天性肌强直的一家系和一例散发的患者进行详细的临床资料搜集,对家系先证者以及相关的亲属进行CLCN1和SCN4A基因测序。结果家系中3代共有7例患者,其中5例患者以及一例无症状的家系成员接受了基因检测,结果发现5例患者携带CLCN1A298 T突变。在散发的患者中发现了S723 R错义杂合突变。结论 CLCN1基因A298 T突变是家系中先天性肌强直患者的致病突变,而S723R是否为散发患者的致病突变需要进一步明确。  相似文献   

20.
Voltage-gated ClC-1 chloride channels encoded by the CLCN1 gene have a major role in setting the membrane potential in skeletal muscle. More than 60 CLCN1 mutations have been associated with myotonia congenita. These mutations are traditionally classified as recessive (Becker's disease) or dominant (Thomsen's disease). In this study, we have electrophysiologically characterized two new dominant ClC-1 mutations, thereby elucidating the observed phenotype in patients. The two ClC-1 mutants M128V and E193K were identified, and the DNA was isolated from patients and subsequently expressed in Xenopus laevis oocytes for electrophysiological characterization. Both ClC-1 mutants, M128V and E193K, showed a large rightward shift in the current-voltage relationship. In addition, the activation kinetics were slowed in the ClC-1 M128V mutant, as compared to the wild-type ClC-1. Interestingly, ClC-1 E193K revealed a change in reversal potential compared to wild-type channels. This finding supports the notion that the E193 amino acid is an important determinant in the selectivity filter of the human ClC-1 channel. The electrophysiological behavior of both mutants demonstrates a severe reduction in ClC-1 channel conductance under physiologically relevant membrane potentials. These studies thereby explain the molecular background for the observed myotonia in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号