首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
目的 菜籽油在烹饪、食品加工及工业生产中广泛应用,因此,根据生产需要改善菜籽油脂肪酸组分是油菜育种的重要目标。通过对2种环境下甘蓝型油菜主要脂肪酸组成进行QTL定位分析,寻找甘蓝型油菜脂肪酸组分的QTL及影响本群体脂肪酸组分的候选基因。方法以人工合成甘蓝型油菜10D130和甘蓝型油菜常规品种中双11构建高世代重组自交系(RIL)为研究材料,分别于2016-2017年和2017-2018年2个年度在重庆市北碚区2个不同的环境中设置田间试验,收获自交种子,采用气相色谱法3次重复对种子的脂肪酸组分进行分析。利用油菜6K SNP芯片对该RIL群体进行基因分型,DNA样品预处理及芯片处理严格按照Illumina Inc 公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 2.0利用JoinMap4.0软件构建高密度遗传连锁图谱。通过QTL IciMapping V4.1完备区间作图法对油菜主要脂肪酸组成进行QTL定位。结果 2种环境中,两亲本各性状间差异及RIL群体各性状在株系间差异均达到显著或极显著水平,且6种脂肪酸含量在2个环境中均表现为连续分布,适合进行QTL检测。构建用于QTL定位的遗传图谱包含1 897个多态性SNP标记,覆盖甘蓝型油菜基因组3 214.19 cM,平均图距1.69 cM。利用此图谱,在2个环境共检测到位于8条染色体上的23个控制脂肪酸组分QTL位点,与硬脂酸、油酸、亚油酸、亚麻酸、廿碳烯酸和芥酸含量相关的QTL位点分别为6、3、4、5、2和3个,其中在A05、A08和C03染色体上发现多种脂肪酸含量的QTL“富集区”。在A05染色体上检测到亚油酸和亚麻酸含量重叠的主效QTL,亚油酸与亚麻酸表现加性效应相同;在A08和C03上都检测到油酸、廿碳烯酸和芥酸含量重叠的主效QTL,油酸与廿碳烯酸及芥酸表现加性效应相反。与拟南芥脂肪酸代谢基因进行同源性比对分析,在17个QTL置信区间内筛选到22个候选基因,主要通过编码脂肪酸去饱和酶、全羧化酶合酶、碳链延长酶和参与酰基辅酶A生物合成等途径调控脂质的生物合成和代谢。结论 利用甘蓝型油菜6K SNP芯片准确定位了2种环境条件脂肪酸组成的QTL位点,筛选到位于A05、A08和C03染色体上多种脂肪酸QTL的“富集区”,并与拟南芥脂肪酸代谢基因比对出该群体油菜脂肪酸代谢基因,可作为改善油菜籽脂肪酸组成的重要区段及候选基因。  相似文献   

2.
大豆农艺性状的QTL分析   总被引:2,自引:0,他引:2  
[目的]分析大豆农艺性状的QTL,为探讨大豆的遗传机制及进行遗传育种提供参考。[方法]应用复合区间作图法对蛋白质含量、脂肪含量、产量、百粒重、生育期等5个数量性状进行QTL定位和遗传效应分析。[结果]控制蛋白质含量、脂肪含量、产量、百粒重、生育期性状的4、4、1、2、5个共16个QTL位点,遗传贡献率在7.4%~33.7%。其中,遗传贡献率较大的主效QTL有分别位于I连锁群上Satt562-Sat_219、Sat_219-Satt496、Sat_219-Satt496区间的3个控制蛋白质含量的QTL位点,其遗传贡献率分别为29.15%、33.70%和31.67%,且均为来自母本合丰25的加效基因,还有位于O连锁群上Satt477-Satt331、Satt331-Satt153区间的2个控制生育期QTL位点,其遗传贡献率分别为24.69%和24.96%,也是来自母本合丰25的加效基因。另外,6个分别距M连锁群Satt175(蛋白质)、A1连锁群Satt684(油分)、F连锁群Satt348(油分)、J连锁群Sat_412(油分)、C1连锁群Sat_416(百粒重)、C1连锁群Sat_416(生育期)标记仅有0.01 cm的QTL位点。[结论]定位了影响蛋白质含量、油分含量、产量、百粒重和生育期等5个重要农艺性状的QTL位点。  相似文献   

3.
【目的】定位大豆蛋白质和油分含量QTL及互作分析,为大豆品质性状QTL精细定位和分子辅助育种提供基础。【方法】以Charleston和东农594为亲本,构建了含147个株系的重组自交系,以F2:19-F2:20代重组自交系为试验材料,利用Windows QTL Cartographer V. 2.5软件的复合区间作图法和多重区间作图法,对该群体的蛋白质和油分含量进行QTL定位分析,并利用QTL Network 2.1软件分析QTL间的上位性效应及环境互作效应。【结果】采用CIM和MIM 2种算法在2011和2012年哈尔滨、红兴隆、佳木斯和牡丹江每年3个地点共6个种植环境下共定位了9个蛋白质和11个油分含量QTL。蛋白质含量QTL分布在6个连锁群,分别在A1、C2、D1a、G、H和O连锁群上,对表型效应的贡献率为5.3%-18.6%,在H连锁群上的qPro-H-1贡献率最大,为18.6%,在D1a连锁群上的qPro-D1a-2贡献率最小,为5.3%,在单种植环境下有5个蛋白质含量QTL被2种算法同时检测到,分别是qPro-O-1、qPro-A1-1、qPro-D1a-1、qPro-D1a-2和qPro-C2-2。油分含量QTL分布在8个连锁群,分别在A1、A2、B1、C2、D1a、E、L和M连锁群上,对表型效应的贡献率为7.1%-24.4%,在B1连锁群上的qOil-B1-2贡献率最大,为24.4%,在C2连锁上的qOil-C2-3贡献率最小,为7.1%,在单种植环境下有2个油分含量的QTL被2种算法同时检测到,分别为qOil-C2-1和qOil-M-1。另外,有2个油分含量QTL在2个以上种植环境重复检测到,为2011年哈尔滨和2011年红兴隆2个种植环境下同时检测出的qOil-A1-1,2011红兴隆、2011牡丹江和2012哈尔滨3个地点同时被检测出的qOil-B1-2。在互作效应分析中,共检测出3对蛋白质上位效应QTL和4对油分上位效应QTL,在蛋白质上位性分析中,上位效应值在0.2068-0.3124,贡献率在0.0227%-0.0265%,分布在A1、C2、D1和E连锁群上,其中,qPro-A1-3与qPro-C2-1效应值为负,其余2对效应值为正,连锁群A1,D1a均有2个QTL发生互作。在油分上位性分析中,上位效应值在0.0926-0.1682,贡献率在0.0294%-0.0754%,分布在A1、C2、I、J、N和O连锁群上,其中,qOil-C2-4与qOil-N-1效应值为负,其余3对效应值为正,在N连锁群的qOil-N-1同时与2个QTL发生互作,分别是C2连锁群上的qOil-C2-1和qOil-C2-4。在与环境互作中,qPro-D1a-3与qPro-E-1在2012年佳木斯地点没检测出,其余6对都检测出与环境的互作效应,贡献率分别为0.0001%-0.0378%,互作效应都较小,明显小于自身的加性效应。【结论】定位到9个蛋白质相关QTL和11个油分相关QTL,并发现3对蛋白质含量上位性效应QTL和4对油分含量上位性QTL。  相似文献   

4.
大豆异黄酮与脂肪、蛋白质含量基因定位分析   总被引:8,自引:2,他引:6  
 【目的】研究大豆异黄酮与脂肪、蛋白质含量基因定位及相关性,为大豆品质改良、分子育种及基因克隆等应用提供理论依据。【方法】利用SSR技术,对晋豆23号和灰布支杂交构建的F13代大豆重组自交系群体的474个家系进行了连锁图谱的构建。在此基础上,利用 WinQTLCart2.0 软件分析了影响大豆异黄酮含量、脂肪含量和蛋白质含量3个重要品质性状的QTL,通过复合区间作图分析,检测QTL;同时,对异黄酮与脂肪、蛋白质的含量相关性分析。【结果】检测到23个QTL,其中控制异黄酮含量QTL有6个,分别定位在J、N、D2和G染色体的连锁群上;控制脂肪含量的QTL有11个,分别定位在第A1、A2、B2、C2和D2染色体的连锁群上;控制蛋白质含量的QTL有6个,分别定位在B2、C2、G和H1染色体的连锁群上。相关性分析结果表明:异黄酮与蛋白质含量呈极显著负相关;蛋白质和脂肪含量呈极显著负相关;蛋白质和蛋白质脂肪总量呈极显著正相关。【结论】3个重要品质性状的部分基因定位结果与其相关性分析是一致的,其结果对大豆品质育种应用有重要利用价值。  相似文献   

5.
利用BC_3F_1群体定位和分析甘蓝型油菜A7-含油量QTL   总被引:2,自引:0,他引:2  
【目的】通过构建BC3F1群体对第7连锁群上一个影响油菜籽油分含量的主效QTL(A7-QTL)进行定位确认。【方法】在用SG-DH群体初定位基础上以欧洲品种Sollux为轮回亲本、目标区段含中国亲本Gaoyou等位基因片段的DH系为供体构建近等基因系。用1700个BC3F1单株基因型和其种子(BC3F2)表现型,采用WinQTLCartographer2.5和SPSS11.5软件对A7-QTL进行精细定位以及标记和性状的关联分析。【结果】含油量QTL的置信区间在标记ZAAS849s-R131之间,范围在21.7cM左右,其LOD峰值为9.71,距离两侧最近标记RPSaA3和ZAAS839分别为0.9和2.1cM,QTL的加性效应值是0.75;QTL区段内的单标记方差分析表明:目标区段内4个标记各3种基因型的含油量之间存在极显著差异,标记ZAAS839处的差异最显著(P=1.2×10-10);通过比较含油量和4个标记之间的对应关系,进一步推断QTL最可能位于标记RPSaA3和ZAAS839之间或临近。【结论】用BC3F1群体定位的QTL区间与DH群体分析结果相重叠,但置信区间明显缩小;定位结果进一步确认了A7连锁群上存在油分QTL的真实性,增加了在该区域存有参与控制油菜含油量基因的可靠性;QTL可能存在于标记RPSaA3和ZAAS839临近区域,两标记间距约3cM。  相似文献   

6.
大豆农艺性状的QTL分析(摘要)(英文)   总被引:3,自引:0,他引:3  
[目的]分析大豆农艺性状的QTL,为探讨大豆的遗传机制及进行遗传育种提供参考。[方法]以栽培大豆"合丰25"为母本和半野生大豆"新民6号"为父本杂交得到的122个F8代重组自交系为试材,应用复合区间作图法对蛋白质含量、脂肪含量、产量、百粒重、生育期5个数量性状进行QTL定位和遗传效应分析。蛋白质、脂肪含量均使用近红外谷物分析仪测定。[结果]控制蛋白质含量、脂肪含量、产量、百粒重、生育期性状的4、4、1、2、5个共16个QTL位点,遗传贡献率在7.4%~33.7%。其中,遗传贡献率较大的主效QTL有分别位于I连锁群上Satt562-Sat_219、Sat_219-Satt496、Sat_219-Satt496区间的3个控制蛋白质含量的QTL位点,其遗传贡献率分别为29.15%、33.70%和31.67%,且均为来自母本合丰25的加效基因,还有位于O连锁群上Satt477-Satt331、Satt331-Satt153区间的2个控制生育期QTL位点,其遗传贡献率分别为24.69%和24.96%,也是来自母本合丰25的加效基因。另外,6个分别距M连锁群Satt175(蛋白质)、A1连锁群Satt684(油分)、F连锁群Satt348(油分)、J连锁群Sat_412(油分)、C1连锁群Sat_416(百粒重)、C1连锁群Sat_416(生育期)标记仅有0.01cm的QTL位点。[结论]定位了影响蛋白质含量、油分含量、产量、百粒重和生育期5个重要农艺性状的QTL位点。  相似文献   

7.
【目的】菜籽油包括多种脂肪酸组分,提高油酸(C18:1)含量,降低亚麻酸(C18:2)和芥酸(C22:1)含量是油菜育种改良和遗传研究的重要目标。本研究利用刚开发的油菜60K芯片构建的高世代重组自交系群体遗传连锁图谱,对3个不同环境中影响甘蓝型油菜品质的油酸、亚麻酸及芥酸含量进行QTL定位分析,研究结果可对脂肪酸组分QTL位点在不同的群体之间准确比较分析。【方法】以高芥酸亲本GH06为母本和低芥酸亲本P174为父本构建高世代重组自交系,分别于2008年在德国吉森、德国霍亨里特及2009年德国吉森3个不同的环境中设置田间试验,收获自交种子,采用近红外分析方法3次重复对种子的脂肪酸组分进行分析。利用油菜60K芯片对重组自交系群体进行基因型分析,DNA样品预处理及芯片处理严格按照Illumina Inc公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 5.0利用MSTmap软件构建遗传图谱。QTL定位所用的遗传图谱包括2 756个SNP位点,覆盖甘蓝型油菜基因组1 832.4 cM。利用Windows QTL Cartographer复合区间作图法对油酸、亚麻酸及芥酸含量进行QTL定位。【结果】在3个环境中,油酸和芥酸含量均表现为极显著负相关,相关系数均达到-0.95,且表现为主基因控制的性状,芥酸和亚麻酸表现负相关,油酸与亚麻酸表现正相关。3个性状在3个环境中共检测到14个QTL,在A08和C03上都检测到油酸和芥酸含量重叠的主效QTL位点。在3个环境中,油酸主效QTL位点解释表型变异19%-31%,芥酸主效QTL位点解释表型变异19%-34%,两者表现加性效应相反。A08和C03染色体上的芥酸主效QTL位点加性效应在3个环境中为7.6到9.6,加性效应来自低油酸、高芥酸亲本GH06。亚麻酸属于典型的数量性状,受环境影响较大,在3个环境中检测到不同的微效QTL位点,解释表型变异3%-12%。遗传图谱与物理图谱比较分析发现,脂肪酸去饱和酶FAD2基因位于亚麻酸QTL qA05C18:3的置信区间,而脂肪酸延长酶FAE1基因位于芥酸QTL qA08C22:1的置信区间。【结论】利用该套油菜60K芯片准确定位了油酸、亚麻酸及芥酸QTL位点,位于A08和C03染色体上的芥酸主效QTL位点同时也是油酸的主效QTL位点,该研究结果有利于不同群体在使用该套SNP芯片分析及对脂肪酸组分定位后准确比较分析。  相似文献   

8.
大豆脂肪含量遗传分析及QTL定位研究   总被引:2,自引:0,他引:2  
以高蛋白大豆品种吉育50和高油大豆品种吉农18杂交后获得的F2及其衍生群体为材料,采用主基因+多基因混合遗传模型和QTL IciMapping v2.2完备区间作图法研究大豆脂肪含量的遗传规律.结果表明:大豆脂肪含量表现为多基因遗传模型,主要受多基因控制,多基因遗传率为79.15%;对大豆脂肪含量进行QTL定位和分析,共检测到2个主效QTL和2个微效QTL,分布于12(G)、17(M)和22(F)3个连锁群上,其中包括了1个在2年间稳定存在的主效QTL.  相似文献   

9.
【目的】异黄酮是大豆等豆类植物中富含的一类次生代谢产物,对食品和保健产业有重要作用。大豆籽粒可分离出12种异黄酮组分,可归为三大类:大豆苷类异黄酮、染料木苷类异黄酮和黄豆苷类异黄酮。通过鉴定大豆籽粒异黄酮总含量及3个组分含量性状的加性及上位性QTL,进而全面解析其复杂的遗传构成。【方法】利用先进2号和赶泰2-2双亲衍生的大豆重组自交系群体NJRSXG,在5个环境下测定4个异黄酮含量性状:异黄酮总含量(total isoflavone content,SIFC)、大豆苷类异黄酮总含量(total daidzin group content,TDC)、染料木苷类异黄酮总含量(total genistin group content,TGC)和黄豆苷类异黄酮总含量(total glycitin group content,TGLC)。选用混合模型复合区间作图法(mixed-model-based composite interval mapping,MCIM)和限制性两阶段多位点全基因组关联分析方法(restricted two-stage multi-locus genome-wide association analysis,RTM-GWAS)进行异黄酮含量QTL检测。【结果】2个亲本在4个异黄酮含量性状上均存在较大差异,重组自交系群体异黄酮含量在高值、低值2个方向上均出现超亲分离,低值方向分离趋势强于高值方向。利用连锁定位MCIM方法共检测到4个异黄酮含量性状的19个加性QTL和16对上位性QTL,分布于15条染色体上。第14染色体重要标记区间GNE186b—Sat020内检测到3个新加性QTL:qSifc-14-1qTdc-14-2qTgc-14-1,且表型变异解释率最高。利用关联定位RTM-GWAS方法分别检测到4个异黄酮含量性状的51、66、42和36个关联标记位点,表型变异解释率为39.7%—52.5%,检测到的位点中覆盖了MCIM方法检测的19个加性QTL中的11个以及11个上位性QTL。候选基因分析分别在加性QTL区域和上位性QTL区域检测到93和100个候选基因,富集分析显示在第14染色体重要标记区间GNE186b—Satt020内,Glyma14g33227Glyma14g33244Glyma14g33715的功能与异黄酮代谢有关。【结论】连锁定位和关联定位2种方法结合能相对全面地检测异黄酮含量QTL。与连锁定位方法MCIM相比,关联定位方法RTM-GWAS检测的QTL更多,总遗传贡献率更高,但尚不能检测上位性QTL,2种方法定位结果可相互验证补充,大豆籽粒异黄酮含量由大量QTL/基因控制。  相似文献   

10.
【目的】寻找与马铃薯晚疫病水平抗性紧密相关的候选基因,以期作为分子标记辅助选择的重要标记。【方法】以BCT和PCC1两个马铃薯群体为材料,对38个晚疫病菌诱导表达的ESTs和基因进行定位,再将定位结果与已定位的QTL位点进行比对。【结果】11个候选基因的引物在两个群体中扩增出13个多态性位点,其中12 个多态性位点定位到遗传连锁图谱上。定位结果与QTL进行比较显示,07-F08-P1-564位于晚疫病QTL区域。【结论】07-F08-P1-564与马铃薯晚疫病水平抗性紧密相关。定位的候选基因丰富了马铃薯的连锁群,可作为遗传连锁图谱构建的桥梁,同时也为筛选重要抗性候选基因奠定了基础。  相似文献   

11.
大豆巢式关联作图群体蛋白质含量的遗传解析   总被引:1,自引:1,他引:0  
【目的】大豆是重要的经济作物,是人类植物蛋白质和油脂的主要来源。蛋白质含量作为大豆育种的主要目标之一,属于多基因控制的复杂数量性状,并且受环境条件的影响。通过对大豆巢式关联作图群体的蛋白质含量进行全基因组关联分析,解析其遗传构成,为高蛋白质含量的大豆品种育种提供理论基础。【方法】以蒙8206为共同亲本,对临河×蒙8206、正阳×蒙8206、蒙8206×通山与蒙8206×WSB分别杂交,通过单粒传法自交7代衍生的4个重组自交系群体,共计623个家系,整合为一个大豆巢式关联作图群体,利用RAD-seq技术进行SNP标记基因分型,并于2012年至2014年将该群体种植在5个不同田间环境,在大豆完熟期R8时测定蛋白质含量,利用限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)来解析蛋白质含量的遗传构成。【结果】试验群体的蛋白质含量变异较大,蛋白质含量性状遗传率较高,遗传变异可解释85.00%的表型变异。多环境联合方差分析表明,蛋白质含量的基因型、环境以及基因型×环境均达到差异极显著水平。全基因组关联分析共检测到90个蛋白质含量QTL,其中新检测到20个QTL,每个QTL的表型变异解释率为0.06%—3.99%,贡献率总和为45.60%。每个QTL包含2—5个等位变异,等位变异效应为-2.434%—2.845%,大多数等位变异效应为-1.000%—1.000%,表明大多数等位变异的效应较小。根据检测的90个蛋白质含量QTL,预测了73个蛋白质含量相关基因,其中Glyma20g24830参与甘氨酸与芳香族氨基酸代谢,Glyma18g03540参与半胱氨酸生物合成,推测其为重要蛋白质含量候选基因。根据试验群体的蛋白质含量QTL-allele矩阵,预测出潜在杂交组合的纯系后代的蛋白质含量育种潜力高达56.5%。【结论】检测到90个大豆蛋白质含量QTL,新检测到20个QTL,预测到73个蛋白质含量相关基因,表明大豆蛋白质含量是由多基因控制的数量性状。  相似文献   

12.
王怡悦  刘红  徐姚 《南方农业学报》2022,53(10):2701-2713
【目的】构建凡纳滨对虾高密度遗传连锁图谱,并对生长相关性状进行QTL定位,筛选出生长性状相关候选基因,为后续开展凡纳滨对虾分子标记辅助育种、生长相关功能基因精细定位研究等提供理论依据。【方法】以耐低盐选育凡纳滨对虾为父本,厄瓜多尔野生凡纳滨对虾为母本,单尾交配,以2个亲本及150个F1代个体为作图群体,通过2b-RAD测序挖掘SNP分子标记并构建遗传连锁图谱;结合生长性状表型数据,使用MapQTL 6.0在构建的遗传连锁图谱上对体质量、全长、体长、头胸甲长、头胸甲宽、头胸甲高等13个生长相关性状进行QTL定位。筛选QTL区间SNP分子标记附近的基因,经GO功能注释及KEGG信号通路富集分析,挖掘生长相关候选基因;并采用实时荧光定量PCR检测候选基因在凡纳滨对虾不同组织及不同群体间的表达情况。【结果】构建的凡纳滨对虾遗传连锁图谱包括3136个SNPs标记,分布在44个连锁群上;总图谱全长为5430.54 cM,平均图距为1.73 cM。生长性状QTL定位共产生79个生长性状相关QTLs,LOD范围为3.00~11.04,可解释的表型变异范围为9.0%~28.8%。根据GO功能注释及KEGG信号通路富集分析结果,最终筛选出4个生长相关候选基因(TOB2、CRAT、CCT6、KLF4)。4个候选基因在凡纳滨对虾各组织中均普遍表达,且CCT6、KLF4和TOB2基因在耐低盐选育家系群体中的相对表达量均高于常规的凡纳滨对虾群体,其中CCT6基因表达差异达显著水平(P<0.05)。【结论】基于2b-RAD技术构建的凡纳滨对虾遗传连锁图谱鉴定出79个与生长性状相关的QTLs,并筛选出4个与凡纳滨对虾生长性状相关的候选基因(CCT6、KLF4、TOB2和CRAT)。可见,以2b-RAD技术结合QTL定位能高效、快捷挖掘出凡纳滨对虾生长性状相关候选基因,为开展分子标记辅助育种、生长相关功能基因精细定位研究等提供技术支持。  相似文献   

13.
RTM-GWAS方法应用于大豆RIL群体百粒重QTL检测的功效   总被引:1,自引:1,他引:0  
【目的】为全面解析大豆重组自交系群体中调控百粒重性状的QTL体系,将限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)和不同定位方法进行比较、优选,为后续候选基因体系探索及分子标记辅助育种设计提供依据。【方法】利用以科丰1号和南农1138-2为亲本衍生的重组自交系群体NJRIKY的427个家系,通过由全基因组39 353个SNP构建的3 683个SNPLDB标记及3个环境下的百粒重表型数据,选用复合区间作图法(CIM)、基于混合线性模型的全基因组关联分析方法(MLM-GWAS)和RTM-GWAS3种方法检测百粒重QTL,通过QTL数目和总的表型变异解释率比较检测功效,挑选最佳定位结果进行NJRIKY群体中的百粒重遗传体系解析。通过候选基因体系的功能注释,挖掘调控大豆百粒重的生物学途径。【结果】科丰1号与南农1138-2的百粒重差异较大,多环境平均数分别为9.0和17.9 g,遗传变异系数为12.4%,遗传率为85.4%,适用于百粒重性状的遗传解析。比较3种方法定位结果表明RTM-GWAS方法表现最佳,检测QTL数目最多(57个),解释表型变异最多(70.78%)。而CIM仅检测到14个QTL,解释了56.47%的表型变异,MLM-GWAS仅定位到6个QTL,解释了18.47%的表型变异。RTM-GWAS共检测到57个QTL,分布在19条染色体上,表型变异解释率为0.03%—7.57%,其中41个QTL覆盖了已报道的来自30个双亲群体的81个百粒重QTL,16个QTL为新发现位点,包含一个表型变异解释率大于3%的大效应位点Sw-09-2。此外,检测的57个QTL中有20个位点与环境存在互作效应。这57个QTL构成了影响NJRIKY群体百粒重性状的遗传体系。通过SNPLDB标记与预测基因内的SNP进行χ2检验,共筛选到36个候选基因,其中4个候选基因来自大效应QTL,剩余32个候选基因来自小效应QTL。通过GO注释发现这些候选基因功能注释丰富,其中13个候选基因与籽粒发育直接相关,剩余的候选基因功能丰富,包含转运、转录调节因子等,表明不同生物学途径的基因共同调控NJRIKY群体中百粒重性状的表达。【结论】3种定位方法中,高效的RTM-GWAS方法检测到较为全面的NJRIKY群体的百粒重QTL,更适用于双亲RIL群体的QTL定位。不同功能的候选基因共同调控了复杂的百粒重性状的表达。  相似文献   

14.
 【目的】利用SSR标记对陆海BC4F2和BC4F3代换系进行评价并检测纤维产量与品质相关的QTL,为筛选棉花染色体单片段代换系、精细定位纤维品质QTL、实现分子聚合育种奠定基础。【方法】利用GGT32(graphical genotyping)软件分析每个代换系的基因型组成,采用SAS PROC GLM的单向方差分析方法检测影响各性状的QTL。【结果】检测到50个单片段代换系,其中9株含有纯合的海岛棉片段,并筛选出12个代换片段少、纤维品质优良的代换系。共检测到15个控制产量性状和19个控制纤维品质的QTL,集中分布在12个连锁群中,解释的表型变异率在2.80%—14.13%。【结论】4个上半部平均长度QTL在2个世代中稳定遗传,1个上半部平均长度QTL在前人研究论文中检测到,部分标记位点同时控制几个不同的性状,并发现增效基因不全来自高值亲本。  相似文献   

15.
小麦籽粒蛋白质含量的动态QTL定位   总被引:2,自引:1,他引:1  
 【目的】检测灌浆过程中控制小麦籽粒蛋白质含量(GPC)的条件及非条件QTL,阐明不同时期及不同时段内QTL的表达方式,揭示籽粒蛋白质积累的分子遗传机理。【方法】以花培3号×豫麦57的168个双单倍体(doubled haploid,DH)群体为材料,于6个不同的环境下种植,在籽粒灌浆的5个时期取样,对小麦GPC进行动态QTL分析。【结果】共检测到影响GPC的9个非条件QTL和10个条件QTL。QGpc3A为整个灌浆过程都能表达的非条件QTL,其余条件和非条件QTL只在几个或单独一个时期表达。花后12 d,控制GPC的基因表达活跃,非条件QTL和条件QTL总共能解释表型变异贡献率的42.62%;花后22 d,条件QTL和非条件QTL总共可解释表型变异的贡献率较低,仅为17.43%,GPC降到“低谷”。 QGpc4A-1对GPC前期积累有重要意义,QGpc1D和QGpc4A-2对GPC灌浆中后期积累有重要意义。【结论】GPC呈现出“高-低-高”的变化规律,控制GPC的基因在灌浆过程中以一定的时空方式表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号