首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

2.
3.
4.
Abstract

Phosphopantetheine adenylyltransferase (PPAT) has been recognized as a promising target to develop novel antimicrobial agents, which is a hexameric enzyme that catalyzes the penultimate step in coenzyme A biosynthesis. In this work, molecular modeling study was performed with a series of PPAT inhibitors using molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR) and molecular dynamic (MD) simulations to reveal the structural determinants for their bioactivities. Molecular docking study was applied to understand the binding mode of PPAT with its inhibitors. Subsequently, 3D-QSAR model was constructed to find the features required for different substituents on the scaffolds. For the best comparative molecular field analysis (CoMFA) model, the Q2 and R2 values of which were calculated as 0.702 and 0.989, while they were calculated as 0.767 and 0.983 for the best comparative molecular similarity index analysis model. The statistical data verified the significance and accuracy of our 3D-QSAR models. Furthermore, MD simulations were carried out to evaluate the stability of the receptor–ligand contacts in physiological conditions, and the results were consistent with molecular docking studies and 3D-QSAR contour map analysis. Binding free energy was calculated with molecular mechanics generalized born surface area approach, the result of which coincided well with bioactivities and demonstrated that van der Waals accounted for the largest portion. Overall, our study provided a valuable insight for further research work on the recognition of potent PPAT inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
6.
7.
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R2 = .8319), cross validated coefficient (Q2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R2 = .83) and test set (R2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD–ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.  相似文献   

8.
Abstract

P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.  相似文献   

9.
Abstract

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis in cancer cells by synthesizing fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric activator of phosphofructokinase-1 (PFK-1), which is a rate-limiting enzyme of glycolysis. PFKFB3 is an attractive target for cancer treatment. It is valuable to discover promising inhibitors by using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation. Twenty molecules with known activity were used to build 3D-QSAR pharmacophore models. The best pharmacophore model was ADHR called Hypo1, which had the highest correlation value of 0.98 and the lowest RMSD of 0.82. Then, the Hypo1 was validated by cost value method, test set method and decoy set validation method. Next, the Hypo1 combined with Lipinski's rule of five and ADMET properties were employed to screen databases including Asinex and Specs, total of 1,048,159 molecules. The hits retrieved from screening were docked into protein by different procedures including HTVS, SP and XP. Finally, nine molecules were picked out as potential PFKFB3 inhibitors. The stability of PFKFB3-lead complexes was verified by 40?ns molecular dynamics simulation. The binding free energy and the energy contribution of per residue to the binding energy were calculated by MM-PBSA based on molecular dynamics simulation.  相似文献   

10.
11.
Tumour progression locus-2 (Tpl2) is a serine/threonine kinase, which regulates the expression of tumour necrosis factor α. The article describes the development of a robust pharmacophore model and the investigation of structure-activity relationship analysis of quinoline-3-carbonitrile derivatives reported for Tpl2 kinase inhibition. A five point pharmacophore model (ADRRR) was developed and used to derive a predictive atom-based 3-dimensional quantitative structure activity relationship (3D-QSAR) model. The obtained 3D-QSAR model has an excellent correlation coefficient value (r2?=?0.96), Fisher ratio (F?=?131.9) and exhibited good predictive power (q2?=?0.79). The QSAR model suggests that the inclusion of hydrophobic substituents will enhance the Tpl2 kinase inhibition. In addition, H-bond donating groups, negative ionic groups and electron withdrawing groups positively contribute to the Tpl2 kinase inhibition. Further, pharmacophoric model was validated by the receiver operating characteristic curve analysis and was employed for virtual screening to identify six potential Tpl2 kinase inhibitors. The findings of this study provide a set of guidelines for designing compounds with better Tpl2 kinase inhibitory potency.  相似文献   

12.
Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor–Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2?=?0.709, r2?=?0.949, and r2pred?=?0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.  相似文献   

13.
New Delhi metallo-β-lactamase-1 (NDM-1) as a target for the development of anti-superbug agents, plays an important role in the resistance of β-lactam antibiotics and has received worldwide attention. Sulfhydryl propionic acid derivatives can effectively inhibit the catalytic activity of NDM-1, but the quantitative structure–activity relationship (QSAR) and inhibitor-target recognition mechanism both remain unclear. In this work, CoMFA and CoMSIA models of sulfhydryl propionic acid inhibitors with high predictive ability were obtained, from which the effect of different substituents on the inhibitory activity against NDM-1 were revealed at the molecular level. Then, two 120-nanosecond comparative molecular dynamics (MD) simulations for NDM-1 enzyme and NDM-1-inhibitor complex systems were performed to study the recognition and inhibition mechanism of sulfhydryl propionic acid derivatives. The binding of inhibitors alters the entire H-bond network of the NDM-1 system accompanied by the formation of strong interactions with I35, W93, H120, H122, D124, H189 and H250, further weakens the recognition of NDM-1 by its endogenic substrates. Finally, the results of free energy landscape and conformation cluster analyses show that NDM-1 underwent a significant conformational change after the association with sulfhydryl propionic acid inhibitors. Our findings can provide theoretical support and help for anti-superbug agents design based on the structures of NDM-1 and sulfhydryl propionic acid derivatives.  相似文献   

14.
Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R2?>?0.80), higher F value (F?>?39), and excellent predictive power (Q2?>?0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.  相似文献   

15.
16.
Abstract

In this study we have performed pharmacophore modeling and built a 3D QSAR model for pyrido-indole derivatives as Janus Kinase 2 inhibitors. An efficient pharmacophore has been identified from a data set of 51 molecules and the identified pharmacophore hypothesis consisted of one hydrogen bond acceptor, two hydrogen bond donors and three aromatic rings, i.e. ADDRRR. A powerful 3D-QSAR model has also been constructed by employing Partial Least Square regression analysis with a regression coefficient of 0.97 (R2) and Q2 of 0.95, and Pearson-R of 0.98.  相似文献   

17.
3-Hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) is generally regarded as targets for the treatment of hypercholesterolemia. HMGR inhibitors (more commonly known as statins) are discovered as plasma cholesterol lowering molecules. In this work, 120 atorvastatin analogues were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2 = 0.558 and r2 = 0.977, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2 = 0.582 and r2 = 0.919. Molecular docking and MD simulation explored the binding relationship of the ligand and the receptor protein. The calculation results indicated that the hydrophobic and electrostatic fields play key roles in QSAR model. After MD simulation, we found four vital residues (Lys735, Arg590, Asp690 and Asn686) and three hydrophobic regions in HMGR binding site. The calculation results show that atorvastatin analogues obtained by introduction of F atoms or gem-difluoro groups could obviously improve the inhibitory activity. The new HMGR inhibitor analogues design in this Letter had been submitted which is being currently synthesized by our laboratories.  相似文献   

18.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of substituted 1,4-dihydroindeno[1,2-c]pyrazoles inhibitors, using molecular docking and comparative molecular field analysis (CoMFA). The docking results from GOLD 3.0.1 provide a reliable conformational alignment scheme for the 3D-QSAR model. Based on the docking conformations and alignments, highly predictive CoMFA model was built with cross-validated q 2 value of 0.534 and non-cross-validated partial least-squares analysis with the optimum components of six showed a conventional r 2 value of 0.911. The predictive ability of this model was validated by the testing set with a conventional r 2 value of 0.812. Based on the docking and CoMFA, we have identified some key features of the 1,4-dihydroindeno[1,2-c]pyrazoles derivatives that are responsible for checkpoint kinase 1 inhibitory activity. The analyses may be used to design more potent 1,4-dihydroindeno[1,2-c]pyrazoles derivatives and predict their activity prior to synthesis.  相似文献   

19.
A quantitative structure activity relationship (QSAR) study was performed on the fluroquinolones known to have anti-tuberculosis activity. The 3D-QSAR models were generated using stepwise variable selection of the four methods - multiple regression (MR), partial least square regression (PLSR), principal component regression (PCR) and artificial neural networks (kNN-MFA). The statistical result showed a significant correlation coefficient q(2) (90%) for MR model and an external test set of (pred_r(2)) -1.7535, though the external predictivity showed to improve using kNN-MFA method with pred_r(2) of -0.4644. Contour maps showed that steric effects dominantly determine the binding affinities. The QSAR models may lead to a better understanding of the structural requirements of anti-tuberculosis compounds and also help in the design of novel molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号