首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of acrylic polymer/Na-montmorillonite (Na-MMT) clay nano-composites pressure sensitive adhesives (PSA) are researched. The PSA/clay nano-composites were synthesized by in-situ emulsion polymerization and mechanical blending. And then, different amounts of nanoclay were dispersed in 2-ethylhexyl acrylate (2-EHA)/n-butyl acrylate (BA)/methyl methacylate (MMA)/acrylic acid (AA) monomer mixture, which was synthesized using in-situ emulsion polymerization technique. Morphological observation was carried out using X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). Viscoelastic properties of PSA/clay nano-composites were analyzed using advanced rheometric expansion system (ARES). The adhesion performances of synthesized PSA/clay nano-composites were determined by measurements of peel strength, probe tack and shear adhesion failure temperature.  相似文献   

2.
The high/low refractive index organic/inorganic antireflective (AR) hybrid polymers were formed using the sol–gel process, in which TiO2/2‐hydroxyethyl methacrylate (2‐HEMA) (high refractive index hybrid polymer) and SiO2/2‐HEMA (low refractive index hybrid polymer) two‐layer thin films were formed on a hard coating deposited poly(methyl methacrylate) (HC‐PMMA) substrate by both spin coating and dip coating. The relationship between the process parameters and the optical properties, thickness, porosity, surface morphology, and adhesion was determined. The results show that the reflectance of the two‐layer thin films on HC‐PMMA substrate is less than 0.21% (λ = 550 nm), with good adhesion (5B) and a hardness of up to 4H. In addition, the thickness, porosity, and roughness of the films affect refractive index and the antireflection properties of the AR two‐layered thin film. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The influences of average degree of polymerization (Dp) and terminal group on thermal and optical properties of high refractive indexed transparent polymers were investigated. In this study, 9,9‐bis[4–(2‐hydroxyethoxy) phenyl] fluorene (BPEF) homo polymer was selected because it has been used as a representative monomer in high refractive index polymers as well as its unique property. BPEF has stable amorphous phase and reacts like a polymer. Its unique reaction allows continuous investigation from monomer to polymer. For hydroxyl‐terminated polymer, the refractive index (nd) decreased with increasing Dp. On the other hand, for a phenolic‐terminated group, nd increased with increasing Dp, and both converged to same value in high Dp region. As for glass transition temperatures (Tg), both terminal group series were increased as Dp increased. Though Tg of hydroxyl‐terminated polymer was higher than that of phenolic‐terminated polymer in the low Dp region, both converged to the same value and the inverse number of Tg had linear correlation against the weight percentage of carbonyl groups (CO), which was calculated by Dp. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45042.  相似文献   

4.
《Ceramics International》2017,43(17):14582-14592
Ceramic nanoparticle reinforced aluminum matrix composites usually exhibit superior mechanical properties when compared to monolithic materials, particularly in severe working conditions such as elevated temperatures. Aluminum matrix nano-composites (AMNCs) are widely used for structural applications in aerospace and automotive industries due to their low density and high strength to weight ratio. The aim of this research was to study the effect of SiO2 nanoparticles as the reinforcing phase on the mechanical properties of aluminum matrix composites. For this purpose, powder metallurgy and subsequent hot extrusion methods were used to prepare a reference sample and several Al-SiO2 nano-composite rods, containing 1, 2 and 3 wt% nano-silica. Some sample preparation procedures for the manufacturing process, involved mixing, compaction, sintering, preheating and hot extrusion. Mechanical properties of the developed composites were investigated by macro- and micro-hardness, density measurement, tensile, cold compression and hot compression tests. A scanning electron microscope and an optical microscope were used for microstructural analysis of the composite and monolithic samples before and after the hot extrusion process. Experimental tests on aluminum matrix composites reinforced with nano SiO2 particles revealed that adding just 1 wt% SiO2 nanoparticle increases both hardness and tensile strength by 41.8% and 24.8%, respectively. In addition, the mechanical properties were seen to decrease with increases in the SiO2 weight fraction. Density also decreased as the SiO2 weight fraction increased. It can therefore be said that based on the findings of this study, the SiO2 nanoparticle can be used as an effective reinforcing material for developing aluminum matrix nano-composites.  相似文献   

5.
A series of hard, transparent, thermoset polymer samples containing tetravinylsilane (TVS) and 1,3-benzenedithiol (BDT) with varying loadings of zirconium oxide clusters Zr6(OH)4O4(OMc)12 (ZOC) were synthesized. Resulting polymers exhibited a higher refractive index (n) than the parent polymer containing only the monomers TVS and BDT. The refractive index reached a maximum value of 1.711 at a ZOC loading of 3 wt% and then decreased as the ZOC concentration in the polymer matrix increased. The refractive index of ZOC was determined to be 1.540 using the Becke line method. Because the refractive index of ZOC is lower than that of the TVS–BDT polymer matrix, the finding that the incorporation of small quantities of ZOC can increase the refractive index of the TVS–BDT polymer composite was unexpected and is accounted for by the effects of ZOC on the packing efficiency of the composite.  相似文献   

6.
Flame retardant hyperbranched polyurethanes were prepared by reacting phosphorous containing triol, tris(bisphenol-A) mono phosphate, castor oil, and polyethylene glycol with different diisocyanates like TDI, IPDI and HMDI via A2+B3 method. In this method A2 reactants were diisocyanates along with castor oil and polyethylene glycol whereas phosphorous containing triol was used as B3 reactant and dibutyltin dilaurate (DBTDL) was used as catalyst. Synthesized polyurethans were characterized by gel-permeation chromatography (GPC), elemental analysis, Fourier transform infrared spectroscopy (FTIR) and 1H NMR spectroscopic techniques. Neat polyurethanes were used for preparing films. Nano-clay composites were prepared with various concentration of organomodified montmorillionite nano-clay. Flame retardant, Thermal and mechanical properties of these hyperbranched polyurethanes and their nano-composites were found out. The polyurethanes and their formulations with nano-clay were also used for the coating of mild steel panels. Scratch, pencil, and impact hardness, flexibility and adhesion properties of coated panels were also determined. Observations show an increase in the scratch hardness and flexibility with the introduction of clay. All the coatings show excellent chemical resistance properties compare to their linear counterpart.  相似文献   

7.
The sensing properties of a poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐bithiophene] (F8T2) polymer were investigated at different concentrations and volume percentages. The effects of the concentrations and volume percentages on the sensing parameters were investigated. The sensitivities of F8T2 were found to be 3.190, 1.434, and 0.362 dB/vol % at 290, 580, and 940 nm, respectively. The response of the F8T2 increased with increasing concentration. F8T2 exhibited good sensitivity and response behaviors. Then, the optical parameters based on the refractive indices of the F8T2 at different molarities were calculated. The dispersion energy, moment of the dielectric constant optical spectrum (M?1, M?3), oscillator strength, and contrast of the F8T2 increased with increasing molarity, whereas the average excitation energy or single‐oscillator energy decreased with increasing molarity. The surface morphological properties of the F8T2 polymer film were investigated, and the roughness parameters were obtained. The F8T2 polymer could be used in the fabrication of various sensors because of the good solubility, sensitivity, and response behaviors. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41659.  相似文献   

8.
The durability of the nano-Al2O3 enhanced glass fiber reinforced polymer (GFRP) composites in hydrothermal environment is necessary for hydro/hygro thermal applications. The present investigation emphasizes the effect of nano-Al2O3 filler concentration on moisture absorption kinetics, residual mechanical and thermal properties of hydrothermally treated GFRP nano-composites. Nano-Al2O3 particles were mixed with epoxy matrix through temperature assisted magnetic stirrer and followed by ultrasonic treatment. It has been observed that, the addition of 0.1 wt% of nano-Al2O3 into the GFRP nano-composites reduces the moisture diffusion coefficient by 10%, as well as improves the flexural residual strength by 16% and interlaminar residual shear strength by 17% as compared to the neat epoxy GFRP composites. However, the glass transition temperature has not been improved by the addition of nano-Al2O3 filler. Weibull design parameters have been determined for dry and hydrothermally conditioned nano-composites. A good agreement between the experimental and the simulated stress–strain results has been observed. The interface failure mechanism has been evaluated by field emission scanning electron microscope to support the new findings.  相似文献   

9.
《Ceramics International》2020,46(8):12243-12248
In this research, MWCNT-BaTiO3/silica nano-composites were synthesized and analyzed at different MWCNTs loadings (2, 4, 6, and 8% wt). Utilizing the different concentrations of MWCNTs, the optical responses of MWCNT-BaTiO3/silica nanocomposite were investigated. For this purpose, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy were used. Using the Kramers-Kronig method, the refractive index and dielectric coefficient of MWCNT-BaTiO3/silica nanocomposites were analyzed. Results clearly revealed that the higher incorporation of MWCNTs in nanocomposites led to more strong responses in the real parts of both refractive index and dielectric coefficient. Finally, the transversal (TO)/longitudinal (LO) phonon frequencies shifted to the blue wavenumbers by decreasing the amount of MWCNTs in MWCNT-BaTiO3/silica nanocomposite.  相似文献   

10.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

11.
In this study, TiO2 thin films were fabricated by radio frequency sputtering at room temperature in pure Ar atmosphere starting from a 6?in. TiO2 target. The thickness of the films was controlled by deposition time and the effect of Ar sputtering pressure on the characteristics of TiO2 thin films was evaluated. Surface morphology and optical properties of TiO2 films were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and UV–Vis spectrophotometry. Also, the refractive index and extinction coefficient of films were inferred by fitting spectrophotometric data. Schottky diode were fabricated by evaporation of Ni on TiO2 films. Current-voltage (I-V) measurements of Ni/TiO2 films showed that the rectifying properties of the device improves with the increasing of TiO2 film density and thickness. Therefore, the best I-V characteristic of the device was investigated depending on the temperature. Also, Ni/n-TiO2/p-Si/Al devices were fabricated to understand their transport mechanism.  相似文献   

12.
This paper describes the enhanced mechanical performance that can be achieved by the application of diamond-like carbon (DLC) coatings to polymer substrates. The polymers coated are silicone and polyethylene, and the effect on the friction coefficient is studied. Film adhesion is found to depend on the DLC film refractive index (n), whereas the friction is largely independent of n in the range studied. Films were deposited from a He/C2H2 mixture at 20 Pa (0.15 Torr) on to the polymer substrates placed on a 10-cm-diameter electrode driven at 13.56 MHz. Film growth was monitored by in-situ ellipsometry (at 675 nm), which was performed on a glass slide placed near the polymer substrate. Friction measurements were obtained using a pin-on-disk tribometer, and measurements were carried out using a stainless-steel pin at a linear speed of 6 cm s−1. Film adhesion was evaluated using a pull-adhesion tester. It was found that DLC coatings adhere well to the polymer substrates and can significantly reduce the friction coefficient of polymers such as silicone. Higher refractive index films (which are harder and have a higher mechanical strength) were found to have a poorer adhesion and provide a slightly increased friction on the polymer surface when compared to lower-index films. This study indicates that DLC may be used to enhance the tribological properties of polymers with potential applications in the biomaterials and light-engineering industries.  相似文献   

13.
Novel nanocomposite films of TiO2 nanoparticles and hydrophobic polymers having polar groups, poly (bisphenol‐A and epichlorohydrin) or copolymer of styrene and maleic anhydride, with high refractive indices, high transparency, no color, solvent‐resistance, good thermal stability, and mechanical properties were prepared by incorporating surface‐modified TiO2 nanoparticles into polymer matrices. In the process of preparing colloidal solution of TiO2 nanoparticles, severe aggregation of particles can be reduced by surface modification using carboxylic acids and long‐chain alkyl amines. These TiO2 nanoparticles dispersed in solvents were found not to aggregate after mixing with polymer solutions. Transparent colorless free‐standing films were obtained by drying a mixture of TiO2 nanoparticles colloidal solution and polymer solutions in vacuum. Transmission electronic microscopic studies of the films suggest that the TiO2 nanoparticles of 3–6 nm in diameter were dispersed in polymer matrices while maintaining their original size. Thermogravimetric analysis results indicate that the nanocomposite film has good thermal stability and the weight fraction of observed TiO2 nanoparticles in the film is in good accordance with that of theoretical calculations. The refractive index of nanocomposite films of TiO2 and poly(bisphenol‐A and epichlorohydrin) was in the range of 1.58–1.81 at 589 nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 80 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
We developed a new electrochromic device by using compact Prussian blue (PB)/antimony tin oxide (ATO) nano-composites as anodic electrode and viologen anchoring on titanium dioxide (TiO2) nano-particles as cathodic electrode. The anodic electrode was based on a transparent nanostructured ATO nano-particle film and was electro-deposited by Prussian blue to form compact Prussian blue/ATO nano-composites by means of galvanostatic electrodeposition process. Nanocrystalline TiO2 thin films on conducting glass were modified with a mono-layer of viologen with two anchoring groups, which were much strongly adsorbed onto the surface of TiO2 nano-particles. A polymer gel electrolyte sandwiched between the anodic and cathodic layers is used as the ionic transport layer. The 2.5 cm × 2.5 cm electrochromic device shows high contrast (64.8%, at 600 nm) very low transmittance at colored stage (0.1%, at 600 nm), fast switching time (600 and 720 ms for coloration and bleaching, respectively), high coloration efficiency of 912 cm2 C−1 at 600 nm and good stability. The enhanced performance of the electrochromic device can be attributed to the ATO nano-particles as inter-conductive materials.  相似文献   

15.
The stability of a plasma-treated polymer surface is an important issue, but very often a surface rendered wettable by the treatment is found to revert to a less wettable state with time. The purpose of this work was to minimize the ageing phenomenon by stabilizing the surface layer via crosslinking using an inert gas discharge. The stability of the wettability, adhesion, and mechanical properties of treated polypropylene (PP) has been investigated by a comparative study of two different plasma treatments (i.e. an NH3 plasma and a He plasma pretreatment carried out before the NH3 plasma; He plasma is well known to crosslink polymer surfaces). The aluminium-polypropylene (Al-PP) interfaces present very different features depending on the gas treatment. The role of the treatment time has been pointed out and under our experimental conditions, a treatment time of the order of a few seconds seems to be an overtreatment leading to degradation of the adhesion and mechanical properties. A broad interphase was obtained for an NH3-overtreated PP, in contrast to the abrupt one formed when pretreated with the helium gas followed by NH3 treatment. Good correlations between wettability and mechanical properties with adhesion measurements were established.  相似文献   

16.
A new kind of polymer composite, produced from the typical polybenzoxazine and 0–30 wt-% native and silane-treated aluminium nitride (T-AlN), was investigated. The mechanical tests revealed a significant increase in the microhardness and flexural properties upon adding the T-AlN particles compared to that obtained from the untreated ones. By adding 0–30 wt-% T-AlN, the tensile moduli were accurately reproduced by the Halpin-Tsai and Nielsen models. At 30 wt-% T-AlN, dynamic mechanical analysis showed a significant increase in the storage moduli and the glass transition temperature (Tg), reaching 3.2?GPa and 217°C, respectively. The thermal stability of these materials was significantly improved upon the addition of the T-AlN fillers. These improvements are attributed to the high thermal and mechanical properties of the fillers and their good dispersion and adhesion in and to the matrix as revealed by a morphological analysis.  相似文献   

17.
Polystyrene (PS)–γ‐methacryloxypropyl trimethoxy silane (MPTMS) copolymer/zirconia (ZrO2) nanohybrid materials were successfully prepared by the combination of solvothermal and in situ synthesis methods, in which the comonomer was used as chemical bonding agent between the nanoparticles and the matrix, and acetylacetone (AcAc) was used as a size control agent of ZrO2 in the PS matrix. Then, a new transparency film with a relatively high refractive index (1.72) was successfully obtained, in which ZrO2 could be dispersed well in the PS–MPTMS matrix. Field emission scanning electron microscopy images indicated that AcAc was helpful in the dispersion of the nanoparticles, and smaller ZrO2 particles with no aggregation were obtained in the PS–MPTMS matrix. The structure and thermal properties of the hybrid films were investigated by Fourier transform infrared spectroscopy and thermogravimetric analysis, and the surface properties were also examined. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2320–2327, 2013  相似文献   

18.
In this study, nanocomposites of poly(vinyl chloride) (PVC), using the synthesized titanium dioxide (TiO2) nanorods and commercial nanopowder of titanium dioxide (Degussa P25) were produced by melt blending. The presence of TiO2 nanorods in PVC matrix led to an improvement in mechanical properties of PVC nanocomposites in comparison with unfilled PVC. The photocatalytic degradation behavior of PVC nanocomposites were investigated by measuring their structural change evaluations, surface tension, and mechanical properties before and after UV exposure for 500 h. It was found that mechanical and physical properties of PVC nanocomposites are not reduced significantly after UV exposure in the presence of TiO2 nanorods in comparison with the presence of TiO2 nanoparticles, which can be due to the amorphous structure of the synthesized nanorods. Therefore, it can be concluded that TiO2 nanorods led to an improvement in photostability and mechanical properties of PVC nanocomposites. The interfacial adhesion between TiO2 nanorods and PVC matrix was also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
We report the effect of oxygen mixing percentage (OMP) on structural, microstructural, dielectric, linear, and nonlinear optical properties of Dy2O3‐doped (K0.5Na0.5)NbO3 thin films. The (K0.5Na0.5)NbO3 + 0.5 wt%Dy2O3 (KNN05D) ferroelectric thin films were deposited on to quartz and Pt/Ti/SiO2/Si substrates by RF magnetron sputtering. An increase in the refractive index from 2.08 to 2.21 and a decrease in the optical bandgap from 4.30 to 4.28 eV indicate the improvement in crystallinity, which is also confirmed from Raman studies. A high relative permittivity (εr=281‐332) and low loss tangent (tanδ=1.2%‐1.9%) were obtained for the films deposited in 100% OMP, measured at microwave frequencies (5‐15 GHz). The leakage current of the films found to be as low as 9.90×10?9 A/cm2 at 150 kV/cm and Poole‐Frenkel emission is the dominant conduction mechanism in the films. The third order nonlinear optical properties of the KNN05D films were investigated using modified single beam z‐scan method. The third order nonlinear susceptibility (?χ(3)?) values of KNN05D films increased from 0.69×10?3 esu to 1.40×10?3 esu with an increase in OMP. The larger and positive nonlinear refractive index n2=7.04×10?6 cm2/W, and nonlinear absorption coefficient β=1.70 cm/W were obtained for the 100% OMP film, indicating that KNN05D films are good candidates for the applications in nonlinear photonics and high‐frequency devices.  相似文献   

20.
《Ceramics International》2022,48(12):16492-16498
A non-proportional high-entropy oxide glass disc: 25LaO3/2-25TiO2–25NbO5/2-(25-x) WO3-xZrO2(x = 0, 5, 10) was formed using containerless solidification technology. In optical tests, the 25LaO3/2-25TiO2–25NbO5/2-20WO3–5ZrO2(x = 5) disc had the highest refractive index (2.53) and the highest visible transmittance (84%). In addition, the refractive index of amorphous materials prepared from La2O3, TiO2, Nb2O5, WO3, and ZrO2 were all greater than 2.1, which is considered as a high refractive index. The results suggest that these components can provide a specific reference for optical glass material selection in future research.Furthermore, based on the concept of performance synergy in high-entropy materials, our research group developed a high-entropy amorphous oxide in equal proportion, 20LaO3/2-20TiO2–20NbO5/2-20WO3–20ZrO2 (Qi Xiwei, 2019). The structure has a high refractive index (2.22) and a high Abbe coefficient (61), which ensures that the lens has sufficient clarity when it is ultra-thin. By comparing the results of the two systems, we found that all non-proportional high-entropy systems are unable to simultaneously show both a high Abbe value and a high refractive index. This phenomenon further indicates the necessity of preparing high-entropy amorphous oxide in equal proportion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号