首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过光学显微镜(OM)、拉伸试验机、冲击试验机等研究了不同温度淬火对ZG25MnCrNiMo钢组织及性能的影响。结果表明:淬火态ZG25MnCrNiMo钢组织为板条马氏体。在840~930 ℃温度区间,随着淬火温度的升高,组织中板条马氏体逐渐变细,930 ℃淬火试验钢板条最为细小。ZG25MnCrNiMo钢经840~930 ℃淬火后,进行600 ℃回火,随着淬火温度的升高,试验钢抗拉强度先升高后降低,伸长率和低温冲击吸收能量先降低后升高。930 ℃淬火试验钢抗拉强度最大,为992 MPa。840 ℃淬火试验钢伸长率和-40 ℃低温冲击吸收能量最大,分别为17.1%和78 J。  相似文献   

2.
利用全自动拉力试验机、全自动冲击试验机、光学显微镜和扫描电镜研究不同淬火工艺下Q1300E钢板的力学性能和显微组织。结果表明,当淬火加热时间为60 min,淬火温度为840 ℃时,强度和低温冲击性能最好,回火态力学性能满足GB/T 28909—2012要求,屈服强度1302 MPa,抗拉强度1505 MPa,-40 ℃纵向和横向冲击吸收能量分别为74 J和61 J;淬火温度为870、900和930 ℃时,抗拉强度和低温冲击吸收能量满足GB/T 28909—2012要求,但屈服强度低于1300 MPa;淬火温度的变化对晶粒尺寸的影响较为明显,淬火温度840 ℃时,平均晶粒尺寸最小,为5.7 μm,淬火温度930 ℃时,平均晶粒尺寸为15.9 μm。淬火加热时间对力学性能和晶粒尺寸的影响相对较小,当淬火温度为840 ℃,淬火加热时间为40~80 min时,回火态力学性能满足GB/T 28909—2012要求,晶粒尺寸为4.5~6.5 μm。  相似文献   

3.
通过全自动相变仪、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等,研究880~1100 ℃淬火温度对30 mm厚Q690D钢显微组织、原始奥氏体晶粒尺寸、-20 ℃低温冲击性能和冲击断口形貌的影响。结果表明,当淬火温度低于950 ℃时,试验钢奥氏体平均晶粒尺寸小于10 μm,随着淬火温度的升高,Nb、V、Ti微合金碳化物溶入奥氏体量增加,-20 ℃低温冲击吸收能量逐渐升高;当淬火温度由950 ℃升高至1100 ℃,随着奥氏体晶粒快速长大,试验钢-20 ℃冲击吸收能量由最大值150 J降低至19 J;Q690D钢的最佳淬火工艺为950 ℃×20 min,水冷。  相似文献   

4.
通过加热炉模拟试验、组织观察、性能测试以及断口分析,研究了淬火温度对18Cr2Ni4WA钢组织性能的影响。结果表明:试验钢过热敏感性温度为990℃,1050℃左右晶粒会急速粗化。当淬火温度在820℃下,淬火温度稍高于奥氏体化温度点,试验钢中合金元素和碳化物未能均匀化,导致冲击性能较低。淬火温度由1010℃升高到1220℃时,冲击吸收能量由133 J降低到108 J,断面收缩率由64.5%降低到45.3%,奥氏体晶粒度的降低,导致冲击吸收能量开始大幅降低。为了提高淬火温度,降低保温时间,同时又不会明显降低奥氏体晶粒度和力学性能,应控制热处理淬火温度最高为970℃。  相似文献   

5.
采用扫描电镜(SEM)、电子背散射衍射(EBSD)和力学性能检测等方法,研究了淬火温度对NM450抗腐蚀磨损钢组织和力学性能的影响。结果表明,试验钢在840~960 ℃范围内淬火后低温回火,获得了回火板条马氏体组织。当淬火温度为870 ℃ 或低于此温度淬火时,组织中出现了弥散分布的第二相,其Cr含量明显高于基体,当淬火温度升高至900 ℃及以上时,第二相消失,同时奥氏体晶粒也开始明显长大。随着淬火温度的升高,试验钢的强度和硬度整体趋于下降,冲击吸收能量在900 ℃时达到最高。根据取向分布与晶界分布图可以发现,960 ℃淬火时有效晶粒尺寸最大,大角度晶界占比最低,其冲击性能最差。900 ℃淬火时有效晶粒尺寸与840 ℃相近,但其组织结构更加均匀,大角度晶界所占比例升高,这是900 ℃淬火时冲击性能较高的主要原因。  相似文献   

6.
研究了不同温度“零保温”淬火工艺下,40Cr钢的显微组织与性能的变化规律。结果表明,在850~910 ℃下“零保温”淬火和550 ℃回火后,40Cr钢的硬度、抗拉强度和冲击吸收能量随温度的升高先增加后降低。890 ℃“零保温”淬火和550 ℃回火时,钢的硬度、抗拉强度和冲击吸收能量达到最高值,这些性能均优于同温度下保温淬火时试验钢的性能。40Cr钢“零保温”淬火性能的提高与其淬火后得到的细小板条状马氏体组织、奥氏体晶粒的细化和奥氏体中碳浓度分布不均匀有关。  相似文献   

7.
分别采用870、900、930 ℃淬火及620、650、680 ℃回火,研究不同热处理制度对510 MPa级船板用钢原始奥氏体晶粒度、显微组织、强韧性的影响。结果表明:510 MPa级船用试验钢随870、900、930 ℃淬火温度的升高,晶粒度变为7.5、7、6.5级,强度、平均冲击吸收能量下降;不同温度淬火试验钢随620、650、680 ℃回火温度升高,强度下降,平均冲击吸收能量均呈现先升高后下降趋势;510 MPa级船用试验钢在900 ℃×1.5 h淬火+650 ℃×2 h回火时具有优良的强韧性配合。对于强度有更高要求的试验钢可以选择870 ℃×1.5 h淬火+620 ℃×2 h回火。  相似文献   

8.
采用光学显微镜、电子万能试验机和晶间腐蚀试验等研究了终锻温度对核电用316L奥氏体不锈钢显微组织、力学性能及耐晶间腐蚀性能的影响。结果表明:当始锻温度为940℃,终锻温度为830℃时,试验钢的晶粒度为4.5~5级,比终锻温度860℃和890℃的样品分别高0.5级和1级。终锻温度为830℃的样品在室温下抗拉强度达到574 MPa,360℃高温下抗拉强度为446 MPa,室温下冲击吸收能量达到388 J。随着终锻温度的降低,试验钢的抗拉强度、屈服强度及冲击吸收能量升高,室温及高温伸长率变化不显著。终锻温度在830~890℃范围内,试验钢的耐晶间腐蚀性能良好,终锻温度为860℃的试验钢耐晶间腐蚀性能最佳,再活化率最小。  相似文献   

9.
对贝氏体耐磨钢进行控轧控冷+回火工艺,探究不同温度回火后贝氏体耐磨钢的组织演变和性能。结果表明,经控轧控冷工艺和200℃回火后,试验钢获得较为理想的无碳化物贝氏体/马氏体复相组织,组织中包含8.7%(体积分数)的残留奥氏体。该工艺下钢板获得较好的强韧性匹配,屈服强度达到1172 MPa,抗拉强度达到1613 MPa,断后伸长率达到19.4%,-20℃冲击吸收能量为47 J,并可满足NM500级别的硬度要求。520℃回火后大量粗大碳化物析出,且残留奥氏体基本分解完毕,导致钢板强韧性下降。  相似文献   

10.
通过系列温度淬火试验对低合金耐蚀27CrMo48VNb钢油井管进行热处理,并采用光学显微镜和透射电镜对不同温度淬火后组织、原奥氏体晶粒以及析出相进行了观察,研究了淬火温度对试验钢组织、晶粒尺寸和析出相的影响。结果表明,试验钢淬火后形成了马氏体组织。随着淬火温度升高,淬火后马氏体组织和原奥氏体晶粒尺寸逐渐增加。当淬火温度为890~1000 ℃时,随着淬火温度升高,晶粒尺寸增加较小;当淬火温度超过1000 ℃时,随着淬火温度升高,原奥氏体晶粒显著粗化。组织和原奥氏体晶粒尺寸随淬火温度的变化趋势与高温析出相溶解析出行为有关。试验钢的淬火温度应控制在890~1000 ℃。  相似文献   

11.
淬火温度对Q690D高强钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了一种Q690D高强钢在不同温度淬火后的组织和力学性能。结果表明,淬火温度在890~970℃之间,随着淬火温度的升高,试验钢的强度先增大而后逐渐减小,并在930℃时达到最大;冲击韧性和断后伸长率随淬火温度的升高与强度呈现相反的变化规律。在试验淬火温度区间,试验钢的各项力学性能指标均能满足Q690D钢要求。随着淬火温度的升高,Q690D钢奥氏体平均晶粒尺寸由13.2μm长大到35.3μm,粗大的奥氏体晶粒淬火后得到粗大的板条束组织。  相似文献   

12.
淬火温度对550MPa级厚钢板显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730—910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

13.
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730-910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

14.
热处理工艺对高强韧耐磨铸钢组织和性能的影响   总被引:1,自引:0,他引:1  
研究了淬火温度及回火温度对高强韧耐磨铸钢组织和性能的影响.结果表明:淬火温度低于930 ℃时,材料的硬度随淬火温度的升高而增大;高于930 ℃时,硬度降低,在930 ℃出现硬度峰值;冲击韧度随淬火加热温度的升高先降低后增大.随着回火温度的升高,材料的硬度缓慢降低,而冲击韧度值升高.高强韧耐磨铸钢经930 ℃×2 h淬火(油淬)+240 ℃×2 h回火+240 ℃×2 h回火后,具有较高的强韧性,硬度≥54 HRC,冲击韧度≥43 J/cm~2,组织为回火马氏体+少量的残留奥氏体,试样冲击断口为准解理断裂.  相似文献   

15.
骆晓炜 《金属热处理》2020,45(3):204-207
利用硬度计、拉伸试验机、冲击试验机和光学显微镜等手段,研究了G105钢分别在890、910和930 ℃保温150 min淬火,随后进行630 ℃保温180 min回火处理后组织和性能变化。结果表明:随着淬火温度的升高,G105钢淬火硬度越来越高;经回火处理后,淬火温度为890 ℃和910 ℃时,调质硬度无太大差异,分别为33.2 HRC和32.7 HRC,淬火温度为930 ℃的调质硬度相对提高约1.5 HRC。试验钢强度随着淬火温度的升高也呈现升高趋势,但冲击韧性呈先升高后下降的趋势,这主要是由于调质后存在粒状碳化物的析出现象,导致其冲击韧性显著下降,故认为当淬火温度选取910 ℃时,获得的G105钢综合力学性能较佳。  相似文献   

16.
陈继林  郭明仪  崔娟  张治广 《轧钢》2016,33(1):67-71
研究了热处理工艺对10B38钢微观组织、力学性能以及低温冲击韧性的影响。结果表明:随淬火温度的升高,淬火硬度呈先上升后降低的趋势,在870 ℃时,淬火硬度最大;随着回火温度的升高,马氏体晶界及晶面逐渐有碳化物析出,组织中碳化物由片状连续不均匀分布变为颗粒状弥散分布;抗拉强度与屈服强度都随回火温度的升高而下降,断面收缩率及断后伸长率随回火温度的升高而增加;在350~450 ℃温度区间,冲击功随回火温度升高稳定增加,回火温度在550 ℃以上时,冲击功急速升高,10B38钢经油淬后在550~650 ℃区间回火能够同时满足强度和冲击功的要求。  相似文献   

17.
利用光学显微镜及SEM进行组织观察,通过拉伸和低温冲击试验研究了热处理对两种不同碳含量3.5Ni钢的力学性能和低温韧性的影响。两种3.5Ni钢热轧板分别经860 ℃×1 h空冷的正火处理和860 ℃×1 h水淬+(580, 610, 640)×1 h回火的调质处理。结果表明:含碳量较高的3.5Ni钢热轧态强度低塑性高,但-100 ℃冲击吸收能量低,经正火处理后试验钢的整体性能降低,而调质处理后强度和低温冲击吸收能量均明显提升,塑性略有降低;含碳量较低的3.5Ni钢热轧态已经具有优异的拉伸性能和低温冲击性能,经热处理后拉伸性能和低温韧性没有得到明显提升。  相似文献   

18.
徐优春  谢韬  邓丽 《轧钢》2014,31(5):17-19
本文对16.3 mm厚 X90管线钢板在不同调质处理工艺下的组织性能进行了研究。结果表明:930 ℃淬火温度下,随着回火温度的升高,钢板屈服强度先增加后降低,抗拉强度逐渐降低,从而导致屈强比升高;回火温度为630 ℃时,落锤剪切面中脆性区增多,落锤性能最差。在870 ℃两相区淬火,钢板组织中奥氏体晶粒大幅度细化,再经530 ℃回火,细化的马氏体或者贝氏体组织中出现亚结构的回复软化,板条边界钝化和M/A组元分解的综合作用,使该调质工艺下X90管线钢板的综合性能最佳。  相似文献   

19.
谢晓光  陈俊 《轧钢》2023,40(1):23-28
针对超高强海工钢的研发,采用低碳和较高Ni含量设计了实验钢化学成分,通过力学性能分析及显微组织观察,对比研究了热轧钢板、以及不同热处理温度实验钢板的组织性能,明确了不同热处理温度对超高强海工钢板力学性能的影响规律。结果表明:热轧钢板组织基本为全马氏体组织,经热处理后开始析出碳化物,在热处理温度为650℃时界面处存在一定量的新鲜马氏体或残余奥氏体;经400、500、600℃热处理后,虽然可将实验钢板屈服强度提高至1 000 MPa以上,且断后伸长率大于14%,但由于存在时效脆性,使得钢板在-80℃时发生脆性断裂。经650℃热处理后,尽管实验钢板的屈服强度下降,但仍保持超高屈服强度,为786 MPa;另外,实验钢板的低温冲击韧性得到了显著改善,-80℃冲击吸收功大于125 J,具有最佳的综合力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号