首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aspergillus fumigatus, an important human nosocomial pathogen, is resistant to sordarin derivatives, a new family of antifungals that inhibit protein synthesis by interaction with the EF-2-ribosomal stalk complex. To explore the role of the A. fumigatus ribosome in the resistance mechanism, the fungal stalk proteins were biochemically and genetically characterized and expressed in the sensitive Saccharomyces cerevisiae. Two acidic phosphoproteins homologous to the 12 kDa P1 and P2 proteins described in other organisms were found together with the 34 kDa P0 protein, the third stalk component. The genes encoding each fungal stalk protein were expressed in mutant S. cerevisiae strains lacking the equivalent proteins. Both AfP1 and AfP2 proteins interact with their yeast counterparts of the opposite type and bind to the ribosomal particles in the presence of either the S. cerevisiae or the A. fumigatus P0 protein. The A. fumigatus acidic phosphoproteins did not alter the yeast ribosome sordarin sensitivity. On the contrary, the presence of the fungal P0 induces in vivo and in vitro resistance to sordarin derivatives when present in the yeast ribosome. The mutations A117-->E, P122-->R and G124-->V in A. fumigatus P0 reduce the resistance capacity of the protein. An S. cerevisiae strain with the complete ribosomal stalk of A. fumigatus was obtained, which could be useful for the screening of new antifungals against this pathogenic fungus.  相似文献   

2.
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases.  相似文献   

3.
Saccharomyces cerevisiae ribosomal stalk consists of five proteins: P0 protein, with molecular mass of 34 kDa, and four small, 11 kDa, P1A, P1B, P2A and P2B acidic proteins, which form a pentameric complex P0-(P1A-P2B)/(P1B-P2A). This structure binds to a region of 26S rRNA termed GTPase-associated domain and plays a crucial role in protein synthesis. The consecutive steps leading to the formation of the stalk structure have not been fully elucidated and the function of individual P-proteins in the assembling of the stalk and protein synthesis still remains elusive. We applied an integrated approach in order to examine all the P-proteins with respect to stalk assembly. Several in vitro methods were utilized to mimic protein self-organization in the cell. Our efforts resulted in reconstitution of the whole recombinant stalk in solution as well as on the ribosomal particle. On the basis of our analysis, it can be inferred that the P1A-P2B protein complex may be regarded as the key element in stalk formation, having structural and functional importance, whereas P1B-P2A protein complex is implicated in regulation of stalk function. The mechanism of quaternary structure formation could be described as a sequential co-folding/association reaction of an oligomeric system with P0-(P1A-P2B) protein complex as an essential element in the acquisition of a stable quaternary structure of the ribosomal stalk. On the other hand, the P1B-P2A complex is not involved in the cooperative stalk formation and our results indicate an increased rate of protein synthesis due to the latter protein pair.  相似文献   

4.
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved.  相似文献   

5.
The ribosomal stalk is formed by four acidic phosphoproteins in Saccharomyces cerevisiae, P1α, P1β, P2α and P2β, which form two heterodimers, P1α/P2β and P1β/P2α, that preferentially bind to sites A and B of the P0 protein, respectively. Using mutant strains carrying only one of the four possible P1/P2 combinations, we found a specific phenotype associated to each P1/P2 pair, indicating that not all acidic P proteins play the same role. The absence of one P1/P2 heterodimer reduced the rate of cell growth by varying degrees, depending on the proteins missing. Synthesis of the 60S ribosomal subunit also decreased, particularly in strains carrying the unusual P1α-P2α or P1β-P2β heterodimers, although the distinct P1/P2 dimers are bound with similar affinity to the mutant ribosome. While in wild-type strains the B site bound P1β/P2α in a highly specific manner and the A site bound the four P proteins similarly, both the A and B binding sites efficiently bound practically any P1/P2 pair in mutant strains expressing truncated P0 proteins. The reported results support that while most ribosomes contain a P1α/P2β-P0-P1β/P2α structure in normal conditions, the stalk assembly mechanism can generate alternative compositions, which have been previously detected in the cell.  相似文献   

6.
真核生物酸性核糖体磷酸化蛋白(P0、P1、P2)位于核糖体60S大亚基上,它们在核糖体上共同组成一个向外侧凸出的五聚体的柄状复合物[P0·(P1·P2)2],该复合物在蛋白质合成延伸过程中起着重要作用.为了探讨单细胞真核生物核糖体柄状复合物的组成形式及在蛋白质合成中的作用,对八肋游仆虫(Euplotes octocarinatus)的P1进行了研究.通过生物信息学方法,分析八肋游仆虫基因组及转录组数据,找到2个酸性核糖体蛋白P1基因,从DNA 和cDNA中都扩增到这2个P1基因,表明八肋游仆虫酸性核糖体磷酸化蛋白P1确实存在2个亚型. 将2个基因克隆后分别构建重组表达质粒pET28a-P1A和pGEX-6P-1-P1B,在大肠杆菌BL21中获得高效表达.经镍柱和GST柱亲和层析后,获得较高纯度的八肋游仆虫酸性核糖体蛋白EoP1A和EoP1B,表达产物经Western印迹检测为阳性.Pull-down分析了EoP1A和EoP1B之间的相互作用.结果表明,游仆虫酸性核糖体磷酸化蛋白P1的2个亚型EoP1A和EoP1B之间存在相互作用.  相似文献   

7.
Acidic ribosomal P proteins form a distinct lateral protuberance on the 60S ribosomal subunit. In yeast, this structure is composed of two heterocomplexes (P1A-P2B and P1B-P2A) attached to the ribosome with the aid of the P0 protein. In solution, the isolated P proteins P1A and P2B have a flexible structure with some characteristics of a molten globule [Zurdo, J., et al. (2000) Biochemistry 39, 8935-8943]. In this report, the structure of P1A-P2B heterocomplex from Saccharomyces cerevisiae is investigated by means of size-exclusion chromatography, chemical cross-linking, circular dichroism, light scattering, and fluorescence spectroscopy. The circular dichroism experiment shows that the complex could be ranked in the tertiary class of all-alpha proteins, with an average alpha-helical content of approximately 65%. Heat and urea denaturation experiments reveal that the P1A-P2B complex, unlike the isolated proteins, has a full cooperative transition which can be fitted into a two-state folding-unfolding model. The behavior of the complex in the presence of 2,2,2-trifluoroethanol also resembles a two-state folding-unfolding transition, further supporting the idea that the heterocomplex contains well-packed side chains. In conclusion, the P1A-P2B heterocomplex, unlike the isolated proteins, has a well-defined hydrophobic core. Consequently, the complex can put up its structure without additional ribosomal components, so the heterodimeric complex reflects the intrinsic properties of the two analyzed proteins, indicating thus that this is the only possible configuration of the P1A and P2B proteins on the ribosomal stalk structure.  相似文献   

8.
The yeast ribosomal stalk is formed by a protein pentamer made of the 38 kDa P0 and four 12 kDa acidic P1/P2. The interaction of recombinant acidic proteins P1 alpha and P2 beta with ribosomes from Saccharomyces cerevisiae D4567, lacking all the 12 kDa stalk components, has been used to study the in vitro assembly of this important ribosomal structure. Stimulation of the ribosome activity was obtained by incubating simultaneously the particles with both proteins, which were nonphosphorylated initially and remained unmodified afterward. The N-terminus state, free or blocked, did not affect either the binding or reactivating activity of both proteins. Independent incubation with each protein did not affect the activity of the particles, however, protein P2 beta alone was unable to bind the ribosome whereas P1 alpha could. The binding of P1 alpha alone is a saturable process in acidic-protein-deficient ribosomes and does not take place in complete wild-type particles. Binding of P1 proteins in the absence of P2 proteins takes also place in vivo, when protein P1 beta is overexpressed in S. cerevisiae. In contrast, protein P2 beta is not detected in the ribosome in the P1-deficient D67 strain despite being accumulated in the cytoplasm. The results confirm that neither phosphorylation nor N-terminal blocking of the 12 kDa acidic proteins is required for the assembly and function of the yeast stalk. More importantly, and regardless of the involvement of other elements, they indicate that stalk assembling is a coordinated process, in which P1 proteins would provide a ribosomal anchorage to P2 proteins, and P2 components would confer functionality to the complex.  相似文献   

9.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

10.
The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast cells. It is concluded that the heterodimeric complex of the P1/P2 proteins is formed preferentially. Formation of homodimers (P1/P1 and P2/P2) can also be observed, though with much less efficiency. Regarding that, we propose to describe the double heterodimeric complex as a protein configuration which forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins.  相似文献   

11.
The Saccharomyces cerevisiae ribosomal stalk is made of five components, the 32-kDa P0 and four 12-kDa acidic proteins, P1alpha, P1beta, P2alpha, and P2beta. The P0 carboxyl-terminal domain is involved in the interaction with the acidic proteins and resembles their structure. Protein chimeras were constructed in which the last 112 amino acids of P0 were replaced by the sequence of each acidic protein, yielding four fusion proteins, P0-1alpha, P0-1beta, P0-2alpha, and P0-2beta. The chimeras were expressed in P0 conditional null mutant strains in which wild-type P0 is not present. In S. cerevisiae D4567, which is totally deprived of acidic proteins, the four fusion proteins can replace the wild-type P0 with little effect on cell growth. In other genetic backgrounds, the chimeras either reduce or increase cell growth because of their effect on the ribosomal stalk composition. An analysis of the stalk proteins showed that each P0 chimera is able to strongly interact with only one acidic protein. The following associations were found: P0-1alpha.P2beta, P0-1beta.P2alpha, P0-2alpha.P1beta, and P0-2beta.P1alpha. These results indicate that the four acidic proteins do not form dimers in the yeast ribosomal stalk but interact with each other forming two specific associations, P1alpha.P2beta and P1beta.P2alpha, which have different structural and functional roles.  相似文献   

12.
The large subunit of the eukaryotic ribosome possesses a long and protruding stalk formed by the ribosomal P proteins. This structure is involved in the translation step of protein synthesis through interaction with the elongation factor 2 (EF‐2). The Trypanosoma cruzi stalk complex is composed of four proteins of about 11 kDa, TcP1α, TcP1β, TcP2α, TcP2β and a fifth TcP0 of about 34 kDa. In a previous work, a yeast two‐hybrid (Y2H) protein–protein interaction map of T. cruzi ribosomal P proteins was generated. In order to gain new insight into the assembly of the stalk, a complete interaction map was generated by surface plasmon resonance (SPR) and the kinetics of each interaction was calculated. All previously detected interactions were confirmed and new interacting pairs were found, such as TcP1β–TcP2α and TcP1β–TcP2β. Moreover P2 but not P1 proteins were able to homo‐oligomerize. In addition, the region comprising amino acids 210–270 on TcP0 was identified as the region interacting with P1/P2 proteins, using Y2H and SPR. The interaction domains on TcP2β were also mapped by SPR identifying two distinct regions. The assembly order of the pentameric complex was assessed by SPR showing the existence of a hierarchy in the association of the different P proteins forming the stalk. Finally, the TcEF‐2 gene was identified, cloned, expressed and refolded. Using SPR analysis we showed that TcEF‐2 bound with similar affinity to the four P1/P2 ribosomal P proteins of T. cruzi but with reduced affinity to TcP0. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The yeast ribosomal GTPase associated center is made of parts of the 26S rRNA domains II and VI, and a number of proteins including P0, P1α, P1β, P2α, P2β and L12. Mapping of the rRNA neighborhood of the proteins was performed by footprinting in ribosomes from yeast strains lacking different GTPase components. The absence of protein P0 dramatically increases the sensitivity of the defective ribosome to degradation hampering the RNA footprinting. In ribosomes lacking the P1/P2 complex, protection of a number of nucleotides is detected around positions 840, 880, 1100, 1220–1280 and 1350 in domain II as well as in several positions in the domain VI α-sarcin region. The protection pattern resembles the one reported for the interaction of elongation factors in bacterial systems. The results exclude a direct interaction of these proteins with the rRNA and are compatible with an increase in the ribosome affinity for EF-2 in the absence of the acidic P proteins. Interestingly, a sordarin derivative inhibitor of EF-2 causes an opposite effect, increasing the reactivity in positions protected by the absence of P1/P2. Similarly, a deficiency in protein L12 exposes nucleotides G1235, G1242, A1262, A1269, A1270 and A1272 to chemical modification, thus situating the protein binding site in the most conserved part of the 26S rRNA, equivalent to the bacterial protein L11 binding site.  相似文献   

14.
The translation elongation feactor 1alpha (EF-1alpha) catalyzes the critical step of delivering aminoacyl-tRNAs to the elongating ribosome. A series of Saccharomyces cerevisiae strains containing mutant alleles of the TEF2 gene encoding EF-1alpha have phenotypes consistent with effects on cellular processes related to translation. These include (1) conditional growth defects, (2) antibiotic sensitivity or resistance, (3) altered +1 or -1 ribosomal frameshifting efficiencies, and (4) altered maintenance of the killer phenotype. Although all the mutant alleles were isolated as dominant +1 frameshift suppressors, the effects of these mutations on the cell are quite different when present as the only form of EF-1alpha. Allele-specific effects are observed with regard to their ability to alter the efficiency of programmed +1 frameshifting as opposed to programmed -1 ribosomal frameshifting. The significantly altered efficiency of -1 frameshifting in strains containing the TEF2-4 and TEF2-9 mutant alleles further correlates with a reduced ability to maintain the killer phenotype and the M1 satellite virus of L-A, an in vivo assay of translational fidelity. In light of the proposed models regarding the different A- and P-site occupancy states required for +1 or -1 ribosomal frameshifting, these results aid analysis of interactions between EF-1alpha and the translational apparatus.  相似文献   

15.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

16.
The ribosome has a morphologically distinct structural feature called the stalk, recognized as a vital element for its function. The ribosomal P proteins constitute the main part of the eukaryotic ribosomal stalk, forming a pentameric structure P0-(P1-P2)(2). The group of P1/P2 proteins in eukaryotes is very diverse, and in spite of functional and structural similarities they do not fully complement one another, probably constituting an adaptive feature of the ribosome from a particular species to diverse environmental conditions. The functional differences among the P1/P2 proteins were analysed in vivo several times; however, a thorough molecular characterization was only done for the yeast P1/P2 proteins. Here, we report a biophysical analysis of the human P1 and P2 proteins, applying mass spectrometry, CD and fluorescence spectroscopy, cross-linking and size exclusion chromatography. The human P1/P2 proteins form stable heterodimer, as it is the case for P1/P2 from yeast. However, unlike the yeast complex P1A-P2B, the human P1-P2 dimer showed a three-state transition mechanism, suggesting that an intermediate species may exist in solution.  相似文献   

17.
The analysis of the not well understood composition of the stalk, a key ribosomal structure, in eukaryotes having multiple 12 kDa P1/P2 acidic protein components has been approached using these proteins tagged with a histidine tail at the C-terminus. Tagged Saccharomyces cerevisiae ribosomes, which contain two P1 proteins (P1 alpha and P1 beta) and two P2 proteins (P2 alpha and P2 beta), were fractionated by affinity chromatography and their stalk composition was determined. Different yeast strains expressing one or two tagged proteins and containing either a complete or a defective stalk were used. No indication of protein dimers was found in the tested strains. The results are only compatible with a stalk structure containing a single copy of each one of the four 12 kDa proteins per ribosome. Ribosomes having an incomplete stalk are found in wild-type cells. When one of the four proteins is missing, the ribosomes do not carry the three remaining proteins simultaneously, containing only two of them distributed in pairs made of one P1 and one P2. Ribosomes can carry two, one or no acidic protein pairs. The P1 alpha/P2 beta and P1beta/P2 alpha pairs are preferentially found in the ribosome, but they are not essential either for stalk assembly or function.  相似文献   

18.
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.  相似文献   

19.
In the silkworm Bombyx mori the ribosomal stalk P-protein family consists of two low MW acidic proteins, BmP1 and BmP2, and of one higher MW protein, BmP0, as shown by electrophoretical and immunoblotting western blot analysis of purified ribosomes. Treatment of ribosomes with alkaline phosphatase followed by electrofocusing shifted the isoelectric points to higher pH, implying phosphorylation of the proteins. The cDNAs encoding BmP1 and BmP2 proteins were constructed and expressed in the Saccharomyces cerevisiae mutant strains defective in either the endogenous P1 or P2 proteins. The recombinant silkworm proteins could complement the absence of the homologous yeast proteins and were incorporated to the ribosomes of the transformed strains, helping the binding of the remaining endogenous acidic proteins, present in the cytoplasm in different extent. Thus, BmP1 was able to replace YP1alpha, preferentially binding YP2beta to the ribosome, while BmP2 replaced both yeast P2 proteins and induced the binding of both YP1alpha and YP1beta.  相似文献   

20.
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号