首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigated the densification of undoped, nanocrystalline yttria (Y2O3) powder by spark plasma sintering (SPS) at sintering temperatures between 650°C and 1050°C at a heating rate of 10°C/min and an applied stress of 83 MPa. In spite of the low sinterability of the undoped Y2O3, a remarkable densification of the powder started at about 600°C, and a theoretical density of more than 97% was achieved at a sintering temperature of 850°C with a grain size of about 500 nm. The low temperature SPS is effective for fabricating dense Y2O3 polycrystals.  相似文献   

2.
The results obtained from the sintering of Al2O3–50TiC (in weight percent) composite in the temperature range from 1650° to 1800°C with addition of Y2O3 are presented. Densification is accelerated by the formation of liquid at temperatures above 1750°C, and 99% of theoretical density can be achieved by vacuum sintering at 1800°C for 15 min. The liquid presented at the sintering temperature is crystallized to YAG (Y3Al5O12) during cooling.  相似文献   

3.
The cubic structure of yttrium oxide is stable to 1800°C. in air as indicated by petrographic, X-ray, and differential thermal analyses. A change in lattice parameter of less than ±0.007 a.u. was observed on heating the oxide to 1800°C. The mean specific heat of Y2O3 to 1600°C. was 0.13 cal. per gm. per °C. The coefficient of linear expansion to 1400°C. was 9.3 × 10−6 in. per in. per °C. Compacts of Y2O3 required a temperature of 1800°C. for vitrification. In equimolecular binary mixtures heated in the powdered state at 1500°C., Y2O3 formed compounds with Al2O3 and Fe2O3 and solid solutions with ZrO2 and HfO2. Y2O3 did not react with CaO, MgO, or ThO2. Crystal types and unit-cell sizes of the reaction products are included.  相似文献   

4.
Elastic constants of single crystals of yttria-stabilized zirconia were determined through the temperature range 20° to 700°C. Crystals containing 8.1, 11.1,12.1, 15.5, and 17.9 mol% Y203were measured. The elastic constant C11 was found to decrease and C12 and C44 to increase with increasing Y2O3 content; this appears to be due to decreasing coulombic interaction as Y3+ replaces Zr4+. Except for the 8.1 mol% Y2O3 crystal, the conventional elastic constants all showed normal monotonic decreases with increasing temperature. In the case of the 8.1 mol% Y2O3 crystal, measurements as a function of temperature were not reproducible, and it is likely that this composition at room temperature is below the composition limit of thermodynamic stability of the cubic fluorite phase.  相似文献   

5.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

6.
The effect of sintering additives on superplastic deformation of nano-sized β-Si3N4 ceramics has been studied by compression tests at 1500°C. The sintering additives were (i) Y2O3+Al2O3; (ii) Y2O3+MgO; and (iii) Y2O3. Nano-sized Si3N4 ceramics with different sintering additives had similar microstructures. For the first two sintering additives, the stress exponents were determined to be ∼2 at a lower stress region and ∼1 at a higher stress region, where the strain rate was dependent on sintering additives only at the higher stress region, and was independent at the lower stress region. Nano-ceramics with Y2O3 additives had only one region, which had a stress exponent of ∼1 within the stress range that we studied. The results could be explained by the different deformation mechanisms at the higher and lower stress regions and the influence of viscosity of liquid phase on the transition stress.  相似文献   

7.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

8.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

9.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

10.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

11.
The formation of yttrium iron garnet, Y3Fe2-(FeO4)3, starting with (1) Fe2O3 and Y2O3 and (2) Fe3O4 and Y2O3, was studied as a function of temperature and time by means of magnetic moment and X-ray measurements. The reaction began at 600°C. and was completed at 1200°C. The perovskite phase appeared only between 600° and 800°C. Above 1200°C. only the garnet phase was present. The microwave line width and g -factor at 9303 mc. per second were also measured and related to the preparation variables.  相似文献   

12.
The phase diagram for the system ZrO2-Y2O3 was redetermined. The extent of the fluorite-type ZrO2-YzO3 solid solution field was determined with a high-temperature X-ray furnace, precise lattice parameter measurements, and a hydrothermal technique. Long range ordering occurred at 40 mol% Y2O3 and the corresponding ordered phase was Zr3Y4OL12. The compound has rhombohedra1 symmetry (space group R 3), is isostructural with UY6Ol2 and decomposes above 1250±50°C. The results indicate that the eutectoid may occur at a temperature <400°C at a composition between 20 and 30 mol% Y2O3 Determination of the liquidus line indicated a eutectic at 83± 1 mol% Y2O3 and a peritectic at 76 ± 1 mol% Y2O3.  相似文献   

13.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

14.
Layered composites of alternate layers of pure Al2O3(thickness of 125 μ m) and 85 vol% Al2O3-15 vol% ZrO2 that was stabilized with 3 mol% Y2O3(thickness of 400 μ m) were obtained by sequential slip casting and then fired at either 1550° or 1700°C. Constant-strain-rate tests were conducted on these materials in air at 1400°C at an initial strain rate of 2 × 10-5 s-1. The load axis was applied both parallel and perpendicular to the layer interfaces. Catastrophic failure occurred for the composite that was fired at 1700°C, because of the coalescence of cavities that had developed in grain boundaries of the Al2O3 layers. In comparison, the composite that was fired at 1550°C demonstrated the ductility of the Al2O3+YTZP layer, but at a flow stress level that was determined by the Al2O3 layer.  相似文献   

15.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

16.
Investigations of changes in phase composition, mechanical properties, and microstructure of ZrO2-based plasma-sprayed thermal barrier coatings (TBCs) with 8 mol% CeO2, 19.5 mol% CeO2/1.5 mol% Y2O3, 35 mol% CeO2, and 4.5 mol% Y2O3 after long-term heat treatments at typical operation temperatures (1000°–1400°C) are presented. Experimental studies include X-ray diffractometry, mechanical testing, and scanning electron microscopy. Thermal cycling experiments also have been performed. TBCs with 8 mol% CeO2 contain mainly the tetragonal equilibrium phase and, therefore, show rapid failure because of the high amount of tetragonal → monoclinic phase transformation, even after relatively short heat treatments (1250°C/1 h). In the case of the other systems that consist mainly of the tetragonal or cubic nonequilibrium phases, TBCs with 19.5 mol% CeO2/1.5 mol% Y2O3 or 35 mol% CeO2 reveal a smaller amount of monoclinic phase after long-term heat treatments (1250°C/1000 h) compared with TBCs containing 4.5 mol% Y2O3. TBCs containing 35 mol% CeO2 show a higher degree of sintering than the TBCs with 19.5 mol% CeO2/1.5 mol% Y2O3 and, therefore, a greater increase of the elastic modulus. Among the systems investigated, TBCs containing 4.5 mol% Y2O3 exhibit the highest resistance to failure in thermal-cycling experiments.  相似文献   

17.
Tensile Ductility in Zirconia-Dispersed Alumina at High Temperatures   总被引:1,自引:0,他引:1  
High-temperature plastic flow in Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) has been examined at temperatures between 1400° and 1500°C. Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) exhibits much higher flow stress and smaller tensile elongation below about 1450°C than 0.1 wt% MgO-doped single-phase Al2O3. The suppression of grain growth with ZrO2 dispersion into Al2O3 is not effective for improving the tensile ductility. The limited ductility in Al2O3-10 wt% ZrO2 (2.5 mol% Y2O3) is associated with the increment of flow stress caused by ZrO2. The ZrO2 dispersion or segregation in Al2O3/Al2O3 boundaries suppresses the grain boundary sliding and hence results in the increased flow stress at high temperatures.  相似文献   

18.
Transparent Cr4+-Doped YAG Ceramics for Tunable Lasers   总被引:1,自引:0,他引:1  
Transparent Cr4+:YAG (Y3AlSO12) ceramics doped with Ca and Mg as counterions and SiO2 as a sintering aid were fabricated by a solid-state reaction method using high-purity powders of Al2O3, Y2O3, and Cr2O3. The mixed powder compacts were sintered at 1750°C for 10 h in oxygen, or 1750°C for 10 h under vacuum, and then annealed at 1400°C for 10 h in oxygen. Cr-doped YAG ceramics sintered in oxygen had a brown color and characteristic absorption by Cr4+ ions, whereas these YAG ceramics sintered under different conditions (vacuum + oxygen) had a green color and absorption at ∼590 and 430 nm by Cr3+ ions. The absorption behavior of YAG ceramics sintered in oxygen was almost equivalent to that of Cr4+:YAG single crystals fabricated by the Czochralski method.  相似文献   

19.
The oxidation behavior and its effect on the mechanical properties of fibrous monolith Si3N4/BN after exposure to air at temperatures ranging from 1000° to 1400°C for up to 20 h were investigated. After exposure at 1000°C, only the BN cell boundary was oxidized, forming a B2O3 liquid phase. With increasing exposure temperature, the Si3N4 cells began to oxidize, forming crystalline Y2Si2O7, SiO2, and silicate glass. However, in this case, a weight loss was observed due to extensive vaporization of the B2O3 liquid. After exposure at 1400°C, large Y2Si2O7 crystals with a glassy phase formed near the BN cell boundaries. The oxidation behavior significantly affected the mechanical properties of the fibrous monolith. The flexural strength and work-of-fracture decreased with increasing exposure temperature, while the noncatastrophic failure was maintained.  相似文献   

20.
A precursor for Y3Al5O12 was synthesized as a YAG sol by simply dissolving Y2O3 powder in an alumina sol. Phase-pure Y3Al5O12 powder was obtained by precipitating the YAG sol with an aqueous dilute ammonia solution followed by calcination at 1100°C. TG/DTA analysis showed an exotherm at 938°C attributed to formation of YAG phase and weight loss of 44% at 1000°C. XRD and FT-IR analysis showed that phase-pure YAG can be formed through noncrystalline and metastable hexagonal YAlO3 without forming either yttrium or aluminum formate intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号