首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cr/CrN/CrAlN, CrN/CrAlN and Cr/CrN thin layers were deposited by PVD (Physical Vapor Deposition). The multilayers were obtained from the combined deposition of different layers Cr, CrN and CrAlN thick films on on AISI4140 steel and silicon substrates at 200 °C, and evaluated with respect to fundamental properties such as structure and thermal properties. Cr, CrN and CrAlN single layers were also prepared for comparison purposes. The structural and morphological properties of PVD layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS + WDS microanalyses, stresses were determined by the Newton’s rings methods using the Stoney’s equation and surface hardening and hardness profiles were evaluated by micro hardness measurements. The XRD data and HRTEM showed that both the Cr/CrN, CrN/CrAlN and Cr/CrN/CrAlN multilayer coatings exhibited B1NaCl structure with a prominent reflection along (200) plane, and CrAlN sub-layer microstructures composed of nanocrystallites uniformly embedded in an amorphous matrix. The innovation of this work was to use the thickness of three different coating types to determine the thermal properties. Furthermore, an empirical equation was developed for the thermal properties variations with temperature of AISI4140 steel coated with different multilayer coatings. The thermal conductivity of CrAlN single layered was lower than the multilayer and the bulk material AISI4140. Moreover, the influences of structure and composition of the multilayer coatings on the thermal properties are discussed.The thermal conductivity of nanoscale thin film is remarkably lower than that of bulk materials because of its various size effects.  相似文献   

2.
Wear and corrosion protection using Cr and CrN (PVD coating on Al and Mg) Investigations of the wear behaviour of uncoated Magnesium and Aluminium alloys (AZ 91hp, AlSi 7Mg) are showing very high wear rates of these materials. To improve the wear behaviour both materials were coated with 9 μm CrN using PVD (Physical Vapour Deposition) technology. The tribological behaviour of the coated light metals was tested afterwards by using a plate on cylinder tribometer. Looking at the results, wear is reduced enormously. The great number of defects in the coating of the magnesium alloy is showing almost no influence to the wear behaviour. The corrosion behaviour of chromium and chromium nitride coatings was tested on the magnesium alloy. Because of the defects in the coating, caused by defects like pores in the magnesium, only a short term protection of the alloy can be achieved. The corrosion behaviour of multilayer coatings is better than the behaviour of single layer coatings.  相似文献   

3.
In this study, AlN/TiN was coated on magnesium alloys using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coating on the wear behaviour of the alloys was examined. A physical vapour deposition system for coating processes, a reciprocating wear system for wear tests, a universal hardness equipment for hardness measurement, a X-ray diffractometer (XRD) for compositional analysis of the coating, and a scanning electron microscopy (SEM) for surface examinations were used. It was determined that the wear resistance of the magnesium alloys can be increased by PVD coatings. However, small structural defects which could arise from the coating process or substrate were observed in the coating layers.  相似文献   

4.
Growth defects are present in all PVD hard coatings. They have detrimental influence on their tribological properties (higher sticking of workpiece material, higher friction coefficient, worse corrosion resistance, higher gas permeation). In order to improve the tribological properties of PVD hard coatings it is important to minimize the concentration of growth defects. Conventional TiAlN single layer as well as AlTiN/TiN and TiAlN/CrN nanolayer coatings were deposited on cemented carbide, powder metallurgical high speed steel (ASP30) and cold work tool steel (D2) by magnetron sputtering in the CC800/7 and CC800/9 sinOx ML (CemeCon) deposition systems, respectively. The surface morphology of the coated substrates was examined by scanning electron microscope (FE-SEM) in combination with focused ion beam (FIB), and 3D stylus profilometer. By means of 3D-profilometry we performed several measurements and detailed analysis on a series of samples from the several hundred production batches. The influence of growth defects on GDOES (glow-discharge optical emission spectrometry) depth resolution and pitting corrosion was also studied.  相似文献   

5.
CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between − 50 and − 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased.  相似文献   

6.
In this work, a series of Cr1−xAlxN (0 ≤ x ≤ 0.7) coatings were deposited on high speed steel substrates by a vacuum arc reactive deposition process from two lateral rotating elemental chromium and aluminum cathodes in a flowing pure nitrogen atmosphere. The composition, structural, mechanical, and tribological properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and ball-on-disc tribometer experiments. All of the as-deposited CrAlN coatings exhibited a higher hardness than CrN, showing a maximum hardness of about 40 GPa (at around X = 0.63) which is twice higher than that of the CrN. The wear performance under ambient conditions of the CrAlN coatings was found much better, with both lower friction coefficient and wear rate, than TiAlN coatings deposited by the same technique. The wear rate of the CrAlN coatings against alumina counterpart was about 2-3 orders in magnitude lower than that of the TiAlN coatings. Selected CrAlN coatings with the highest hardness were also deposited on some WC-based end-mills. An evident better performance of the CrAlN-coated end-mills was observed than the TiAlN-coated ones for cutting a hardened tool steel material under high speed machining conditions.  相似文献   

7.
TiN-Cu metal-ceramic coatings grown by vacuum arc PVD and containing 0–20 at % copper consist of titanium nitride and copper, which is X-ray amorphous up to 10 at % Cu. The presence of copper in the coatings reduces the crystallite size of the nitride phase from 100 to 20 nm. The hardness of the coatings increases from 20 to 49 GPa as the copper content of the coatings increases to 3.5 at %. Further increase in copper content, up to 20 at %, accompanied by a decrease in the crystallite size of the nitride phase, leads to a drop in hardness to 14–15 GPa, which is caused by the effect of the soft, plastic metal and porosity. We have studied the tribological and adhesive-cohesive properties of the coatings grown on hard-alloy substrates.  相似文献   

8.
The CrAlN coatings are a good alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on silicon (100) by PVD (Physical vapor deposition) technique from two targets (chromium and aluminum) in a reactive nitrogen atmosphere at aluminum applied negative voltage (−300, −500, −700 and −900 V). The composition, structural, mechanical and thermal properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and the “Mirage effect” experiments.The X-ray diffraction (XRD) data show that in general CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1) and (2 0 0) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing aluminum proportion the coatings became more compact and denser and their increased correspondingly, showing a maximum hardness of about 36 GPa (30 at% of Al) which is higher than that of CrN. Moreover, the results in this work demonstrate that the variation of aluminum fraction alter the resulting columnar grain morphology and porosity of the coatings. However, the thermal properties are greatly affected by these morphological alterations. The correlation between aluminum fraction in CrAlN coatings and its thermal properties revealed that the conductivity and the diffusivity are influenced primarily by size and shape distribution of the pores and secondarily by a decrease of the stitch parameter dimension.  相似文献   

9.
(Cr1‐x,Alx)N a review about a multi‐purpose coating system Nitride based coatings claimed a big market share for PVD‐coatings. Especially in the field for high temperature die casting and cutting operations chromium based coatings are well used. These coatings are also used in low temperature processes for the coating of machine parts. In the beginning of the nineties first examinations are done on the ternary system Chromium‐Aluminium‐Nitride. This system shows an excellent corrosion behaviour against many different liquids, but gains also a high hardness for a good wear behaviour. By changing the AlN to CrN content and the coating design CrAlN opens up a wide range for different coating applications. A major step for machine parts was the reducing of coating process temperature beneath 200 °C. This was only possible by using pulsed power supplies. CrAlN shows a very good performance on the fast growing market of coated machine parts e.g. on spindle bearings.  相似文献   

10.
首先,以15vol%或25vol%的TiC0.5N0.5粉体为导电第二相,利用热压烧结法制备了TiC0.5N0.5/Si3N4复相陶瓷;然后,分别通过物理气相沉积(PVD)和化学气相沉积(CVD)技术在TiC0.5N0.5/Si3N4陶瓷刀具表面沉积了CrAlN和TiN/Al2O3/TiN涂层;最后,通过对TiC0.5N0.5/Si3N4刀具进行连续切削灰铸铁实验,研究了TiC0.5N0.5含量和涂层类型对刀具磨损特征的影响,并探讨了刀具的磨损机制。结果表明:TiC0.5N0.5含量的增加有利于提高TiC0.5N0.5/Si3N4复相陶瓷刀具基体的硬度和电导率,但对耐磨性和切削寿命的影响较小;采用PVD技术沉积CrAlN涂层时,随着TiC0.5N0.5含量的增加,涂层的厚度、结合强度和硬度都得到提高,涂层刀具的磨损性能显著提高,切削寿命也明显延长;而采用CVD技术沉积TiN/Al2O3/TiN涂层时,TiC0.5N0.5含量的变化对涂层的厚度、结合强度和硬度基本没有影响,TiN/Al2O3/TiN涂层刀具整体切削性能变化不大。CrAlN涂层和TiN/Al2O3/TiN涂层都可明显改善TiC0.5N0.5/Si3N4复相陶瓷刀具的耐磨性和切削寿命;相对于TiN/Al2O3/TiN涂层,CrAlN涂层具有更高的涂层硬度和粘着强度,但TiN/Al2O3/TiN涂层具有较大的涂层厚度,TiN/Al2O3/TiN涂层刀具表现出更加优异的耐磨性和切削寿命。TiC0.5N0.5/Si3N4复相陶瓷刀具的磨损机制以机械摩擦导致的磨粒磨损为主,伴随有少量的粘结磨损。  相似文献   

11.
CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 × 10− 7 mm3N− 1m− 1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.  相似文献   

12.
Present paper deals with modelling, production and characterization of HVOF PVD (WC-Co and TiN or CrN, respectively) duplex coatings deposited on Ti-6Al-4V substrate for application in automotive industry. As a preliminary analysis, an analytical study of the contact stress distribution under spherical indenter in both coated and uncoated systems, and a finite element evaluation of residual stresses were performed: results showed that the presence of an interlayer with intermediate hardness and stiffness (such as the WC-Co coating) plays a fundamental role in the improvement of the load carrying capacity. Starting from the results of simulations, morphological and compositional characterization of the coatings were performed using SEM and AFM techniques. Mechanical properties were investigated by micro indentation techniques and composite hardness modelling; toughness of the system was qualitatively analysed by Rockwell C indentation. Wear rate of the coatings was measured by an implemented rotating wheel method. Results show higher superficial composite hardness, toughness, adhesion and lower wear rate, in comparison with the simple monolayer system.  相似文献   

13.
《Composites Part A》2007,38(8):1947-1956
The role of electroless copper coatings applied on short carbon fibres on the interaction between an aluminium alloy (Al–Si–Mg) and coated fibres has been studied to get useful information for the fabrication of carbon fibre reinforced aluminium matrix composites by liquid or semi-liquid processing. The conditions used for electroless were optimized to obtain a uniform and continuous layer of copper. After characterization, uncoated and Cu coated carbon fibres were mixed with AA 6061 aluminium powders, compacted and heated at temperatures from 650 to 950 °C to study the reactivity and the resulting interface. To complete this study, differential thermal analysis (DTA) were carried out on compacted mixtures of aluminium alloy powders with Cu coated and uncoated carbon fibres, applying similar thermal cycles than for the composite manufacturing. The results show an important improving of reinforcement wetting by molten matrix when copper coatings are applied, jointly with a reduction of the alloying elements microsegregation in the matrix, unlike the composites manufactured with uncoated fibres. Additional microhardness and nanoindentation tests were carried out to study the effect of the copper incorporation from the coating to the matrix on the matrix response to the ageing hardening.  相似文献   

14.
Performance of two different physical vapour deposited (PVD) TiCN and Alcrona® (AlCrN) coatings systems is under investigation. Coatings were deposited on the punches produced from the Böhler S390 Microclean steel. Two different surface preparation techniques were used – wet polishing (high surface roughness) and dry polishing (low surface roughness).Industrial trials of PVD coated punches in fine blanking operation were performed and studied. Wear of punches was analysed in regard to the punch geometry, position in the die and surface roughness, and measured after maximum 100,000 cycles at high loads.Punches with higher surface roughness seem to withstand numerous loading cycles with some traces of coating delamination and wear. On the other hand performance of PVD coatings with smaller surface roughness in a striking way was much worse.Comparative trials of the coatings surface fatigue wear and indentation surface fatigue testing were performed in the laboratory as well. In surface fatigue wear testing coatings were dynamically indented by ball (spherical) indenters made from conventional hardmetal (WC-6 wt.%). Testing parameters were identical to those of industrial trials. The Vickers diamond pyramid indenter was cyclically pressed with 500 N load at single point during indentation surface fatigue testing. Results are in agreement with surface fatigue wear tests results.Finally the microstructural investigations using SEM and XRD techniques were performed for better understanding of the surface fatigue and wear mechanisms during fine blanking process.Results of both trials are in good agreement and allow predicting performance of coatings.  相似文献   

15.
This work presents the research results on the structure and mechanical properties of coatings deposited by PVD methods on the X40CrMoV5-1 hot work tool steel substrates. The tests were carried out on CrAlSiN, CrAlSiN+DLC, CrN and WC/a-C:H coatings. It was found that tested coatings have nanostructural character with fine crystallites, while their average size fitted within the range 3-13 nm, depending on the coating type. The coatings demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate, the latter not only being the effect of interatomic and intermolecular interactions, but also by the transition zone between the coating and the substrate, developed as a result of diffusion that caused mixing of the elements in the interface zone and the compression stresses values. The critical load LC2 lies within the range 45-55 N, depending on the coating type. The coatings demonstrate a high hardness (4000 HV).  相似文献   

16.
In this study, the cathodic arc evaporation technique, by using the chromium target and controlling the flow rate of nitrogen/oxygen reactive gases, was utilized to deposit three different Cr-N-O coatings (CrN, CrN/Cr(N,O), CrN/Cr2O3) on AISI M2 tool steel. Two types of wear tests were applied to evaluate the abrasive and erosive wear behavior of the coated and uncoated specimens. One was the ball-on-disk abrasion test to measure the friction coefficient of these specimens. The other was the erosion test using Al2O3 particles (~ 177 µm in size and Mohr 7 scale) of about 5 g, and then the surface morphologies of the eroded specimens were observed. To further understand the coating effects on the two wear behaviors of M2 steel, coating structure, morphology, and adhesion were analyzed using XRD, SEM, and TEM, respectively. The results showed that surface roughness and adhesion of the double-layered coatings (CrN/Cr(N,O) and CrN/Cr2O3) were inferior to those of monolithic CrN, but their hardness and elastic modulus were superior to those of CrN. In the abrasive behavior, Cr-N-O coatings reduced the friction coefficient of M2 substrate. In particular, the CrN/Cr2O3 has the highest hardness/elastic (H/E) modulus ration, therefore the lowest friction coefficient, among all the coated-specimens tested. In the erosive behavior, the coated specimens exhibited better erosion resistance as compared to the uncoated ones, at the impingement angles of either 30o or 90o. Moreover, the erosion resistance of CrN/Cr(N,O) coatings was superior to that of CrN/Cr2O3 coatings due to its better adhesion.  相似文献   

17.
CrN-Ag nanostructured coatings are deposited onto low-alloy steel substrates by means of Physical Vapour Deposition (PVD) reactive magnetron sputtering and PVD reactive arc discharge evaporation. The two different kinds of film have been characterized morphologically, chemically and tribologically. Depending on the used technique, as-deposited film shows different morphology, but in both cases, Ag nano-clusters are present on the surface. The annealing leads to coarsening of superficial Ag clusters and segregation out of the CrN matrix, depending on the temperature. After 600 °C annealing the surface is covered by an almost continuous layer of Ag, no matter which deposition technique is used. Tribological tests at different temperatures show that the lowest coefficient of friction appears at 600 °C for both coatings. The analysis of the wear tracks reveals that such a low friction is related to continuous Ag segregation out-of-CrN matrix, which enables self-lubrication.  相似文献   

18.
Corrosion Studies of Steels Coated by means of PVD with Zn and Zn/Mn Alternative methods for hot dip‐ or electrogalvanic deposition of zinc coatings on steel are gas phase depositions (PVD). They posess high flexibility with respect to alloy composition, and are environmentally harmless. However, a PVD‐coated steel must have at least the same corrosion resistance than steels with “classical” surface finishing. Therefore, the corrosion behaviour of Zn‐coatings and Zn/Mn/system‐coatings deposited by electron beam evaporation without and with ion beam assistance (IBAD) on low alloy steel, was determined by means of salt spray test and electrochemical potential/time measurements. At first the influence of chemical and irradiation pre‐treatment and ion bombardment during deposition on the corrosion resistance of the coatings was investigated. Than the effect of the Zn‐layer thickness was determined in comparison with an 8μm thick electrogalvanized reference coating. Finally Zn/Mn‐alloys, Zn/Mn‐multilayers and Zn‐coatings with Mn‐ or Zn/Mn‐surface layers (top layers) were investigated. By means of optimised pre‐treatment and ion bombardment conditions one obtains, considering the layer thickness, PVD‐Zn coatings with corrosion resistance comparable with the reference layer. The best Mn‐containing coatings are Zn‐coatings with Mn‐toplayer. They surpass the corrosion resistance of the reference layer considerably. Additionally it could be shown that in tendency the potential/time measurements agree very well with the results of the salt spray test.  相似文献   

19.
An established concept adjusting tribological properties and for increasing the wear resistance is presented by coatings. In addition to the material adaption of surfaces, there are efforts of applying structures on tool active parts in order to allow a further adjustment on the property profile. For this reason, the presented article investigates the influence of bionic and technologically textured surfaces on the friction and wear behavior with and without near‐net shaped wear‐resistant PVD coatings. Based on the example of nature, a honeycombed surface structure discovered on the head of scarab beetles as well as a dimple structure optimized for the manufacturing time were transferred on HSS steel by means of micro‐milling. The analyses focus on the influence of the surface structures, the effects of PVD coatings and their interactions on the friction and wear behavior. The investigations show that the tribological properties depend on each surface structure and the material pairing. Both the technological and the bionic structures show a reduction of the friction coefficient in combination with the material pairing 100Cr6 and WCCo compared to polished samples. Furthermore, it is shown that the CrAlN coating has no influence on the friction behavior, but rather leads to the desired increase in the wear resistance.  相似文献   

20.
采用化学镀、氟涂料和真空离子镀(PVD)技术对涡旋干泵实施防护涂层,对转子和定子采用化学镀镍磷和氟涂料封闭技术制备防护涂层;对曲柄轴和曲柄销采用PVD技术制备Cr/CrN多层复合防护镀层。通过腐蚀试验表明,防护涂层可以长时间抵抗高腐蚀性气体的腐蚀,能够有效地提高涡旋干泵的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号