首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A gas–liquid interfacial synthesis approach has been developed to prepare SnO2/graphene nanocomposite. The as-prepared nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller measurements. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO2 nanoparticles (2–6 nm in size) on graphene matrix. The electrochemical performances were evaluated by using coin-type cells versus metallic lithium. The SnO2/graphene nanocomposite prepared by the gas–liquid interface reaction exhibits a high reversible specific capacity of 1304 mAh g−1 at a current density of 100 mA g−1 and excellent rate capability, even at a high current density of 1000 mA g−1, the reversible capacity was still as high as 748 mAh g−1. The electrochemical test results show that the SnO2/graphene nanocomposite prepared by the gas–liquid interfacial synthesis approach is a promising anode material for lithium-ion batteries.  相似文献   

2.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

3.
Mn3O4/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn3O4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn3O4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn3O4/graphene nanocomposites exhibited a high specific capacitance of 175 F g−1 in 1 M Na2SO4 electrolyte and 256 F g−1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn3O4/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn3O4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.  相似文献   

4.
SnO2 nanoparticles/graphene (SnO2/GP) nanocomposite was synthesized by a facile microwave method. The X-ray diffraction (XRD) pattern of the nanocomposite corresponded to the diffraction peak typical of graphene and the rutile phase of SnO2 with tetragonal structure. The field emission scanning electron microscope (FESEM) images revealed that the graphene sheets were dotted with SnO2 nanoparticles with an average size of 10 nm. The X-ray photoelectron spectroscopy (XPS) analysis indicated that the development of SnO2/GP resulted from the removal of the oxygenous groups on graphene oxide (GO) by Sn2+ ions. The nanocomposite modified glassy carbon electrode (GCE) showed excellent enhancement of electrochemical performance when interacting with mercury(II) ions in potassium chloride supporting electrolyte. The current was increased by more than tenfold, suggesting its potential to be used as a mercury(II) sensor.  相似文献   

5.
In this paper, a novel ultrasound assisted, solution-based chemical synthesis method for the preparation of SnO2–graphene nanocomposite is presented. Graphene oxide (GO) was prepared by the modified Hummers–Offeman method in presence of ultrasonic irradiation. Further loading of SnO2 on GO was carried out with an ultrasound assisted solution-based synthesis route. The prepared GO and SnO2–graphene nanocomposite were characterized by XRD, TEM, FTIR spectra, TGA and DTA analysis in order to confirm the formation of graphene–SnO2 nanocomposite. TEM analysis of ultrasonically prepared graphene–SnO2 composite shows the uniform and fine loading of SnO2 particles (3–5 nm) on graphene nanosheets. However agglomerated morphology was observed in case of conventionally prepared graphene–SnO2 composite. The cavitational effects generated due to the ultrasonic irradiations during the synthesis of graphene–SnO2 composite improve the fine and uniform loading of SnO2 on graphene nanosheets by oxidation–reduction reaction between GO and SnCl2·2H2O compared to conventional synthesis methods. The formed material was used for the preparation of anode in lithium ion batteries and its electrochemical performance was characterized by cyclic voltammetry and charge/discharge cycles. It is found that the capacity of SnO2–graphene nanocomposite based Li-battery is stable for around 120 cycles, and the battery could repeat stable charge–discharge reaction.  相似文献   

6.
A nanocomposite of graphene/MnO2 nanoplatelets was prepared by one-step chemistry route at room temperature. The microstructure was characterized by X-ray diffraction, N2 absorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Both TEM and SEM images show that MnO2 nanoplatelets are homogeneously distributed on the graphene nanosheets. The electrochemical properties were tested by cyclic voltammetry, galvanostatic charge–discharge experiments. The nanocomposite exhibited high lithium capacity (905?mAh?g?1 at 100?mA?g?1). The superior lithium storage capability can be attributed to the “open” structure: the large effective surface area and short diffusion paths.  相似文献   

7.
Carbon-coated SnO2 nanoparticles were prepared by a novel facile route using commercial SnO2 nanoparticles treated with concentrated sulfuric acid in the presence of sucrose at room temperature and ambient pressure. The key features of this method are the simple procedure, low energy consumption, and inexpensive and non-toxic source materials. As-prepared core/shell nanoparticles were characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical measurements showed that the carbon-coated SnO2 nanoparticles with 10% carbon and using carboxymethyl cellulose (CMC) as a binder displayed the best electrochemical performance with the highest specific capacity of 502 mAh g−1 after 50 cycles at a current density of 100 mA g−1. In addition, owing to the water solvability of CMC, the usage of CMC as binder makes the whole electrode fabrication process cheaper and more environmental friendly.  相似文献   

8.
SrTiO3-graphene nanocomposites were prepared via photocatalytic reduction of graphene oxide by UV light-irradiated SrTiO3 nanoparticles. Fourier transformed infrared spectroscopy analysis indicates that graphene oxide is reduced into graphene. Transmission electron microscope observation shows that SrTiO3 nanoparticles are well assembled onto graphene sheets. The photocatalytic activity of as-prepared SrTiO3-graphene composites was evaluated by the degradation of acid orange 7 (AO7) under a 254-nm UV irradiation, revealing that the composites exhibit significantly enhanced photocatalytic activity compared to the bare SrTiO3 nanoparticles. This can be explained by the fact that photogenerated electrons are captured by graphene, leading to an increased separation and availability of electrons and holes for the photocatalytic reaction. Hydroxyl (·OH) radicals were detected by the photoluminescence technique using terephthalic acid as a probe molecule and were found to be produced over the irradiated SrTiO3 nanoparticles and SrTiO3-graphene composites; especially, an enhanced yield is observed for the latter. The influence of ethanol, KI, and N2 on the photocatalytic efficiency was also investigated. Based on the experimental results, ·OH, h+, and H2O2 are suggested to be the main active species in the photocatalytic degradation of AO7 by SrTiO3-graphene composites.

PACS

61.46. + w; 78.67.Bf; 78.66.Sq  相似文献   

9.
An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO2/graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO2 or PtRu nanoparticles. The as-synthesized SnO2/graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.  相似文献   

10.
Co-precipitation method of SnCl2·2H2O and graphene oxide (GO) solution was performed to fleetly prepare graphene/SnO2 composite. The structure and composition of the nanocomposite were detected by means of XRD, SEM, TEM and FT-IR. The GO was reduced by bivalent tin ions to graphene nanosheet (GNS) via solution reaction and SnO2 nano-crystals with size of 4–6 nm were homogeneously distributed on the matrix of GNS. It was found that the disorder degree of graphene in GNS/SnO2 composite prepared by the bivalent tin ion assisted reduction method was much lower than that of GNS obtained via pyrolysis reduction. The possible mechanism for this phenomenon was discussed in detail. The N2 adsorption tests showed an ink-bottle-like pore structure of GNS/SnO2 and the SnO2 nanoparticles were confined in the interlayer of GNS without agglomeration. These structural features were desirable and enabled GNS/SnO2 an excellent anode material in lithium ion battery. The electrochemical tests showed that the composite could deliver a reversible capacity of 775.3 mAh/g and capacity retention of 98% after 50 cycles.  相似文献   

11.
E. Jin  Lili Cui 《Electrochimica acta》2010,55(24):7230-7234
In this work, graphene/prussian blue (PB) composite nanosheets with good dispersibility in aqueous solutions have been synthesized by mixing ferric-(III) chloride and potassium ferricyanide in the presence of graphene under ambient conditions. Transmission electron microscopy (TEM) shows that the average size of the as-synthesized PB nanoparticles on the surface of graphene nanosheets is about 20 nm. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) patterns have been used to characterize the chemical composition of the obtained graphene/PB composite nanosheets. The graphene/PB composite nanosheets exhibit good electrocatalytic behavior to detection of H2O2 at an applied potential of −0.05 V. The sensor shows a good linear dependence on H2O2 concentration in the range of 0.02-0.2 mM with a sensitivity of 196.6 μA mM−1 cm−2. The detection limit is 1.9 μM at the signal-to-noise ratio of 3. Furthermore, the graphene/PB modified electrode exhibits freedom of interference from other co-existing electroactive species. This work provides a new kind of composite modified electrode for amperometric biosensors.  相似文献   

12.
《Ceramics International》2016,42(4):5068-5074
Ultrafine SnO2 nanocrystals with sizes of ~4 nm have been successfully loaded on the SnS2 nanosheets to fabricate SnO2/SnS2 hybrids via a facile hydrothermal method. The obtained samples are well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, photoluminence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the SnO2 nanocrystals of ~4 nm are well dispersed and intimately anchored on the SnS2 nanosheets to form nanosized heterojunctions, which can be favorable to the separation of photo-generated holes and electrons. Consequently, the SnO2/SnS2 hybrids demonstrate obviously enhanced photocatalytic activities for reduction of Cr (VI) under visible light compared with both the bare SnO2 and SnS2.  相似文献   

13.
In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.  相似文献   

14.
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173?m2 g?1) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473?F?g?1 at 0.25?A?g?1, which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.  相似文献   

15.
Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol–gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV–vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV–vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.  相似文献   

16.
TiO2-graphene nanocomposite was prepared by hydrolysis of titanium isopropoxide in colloidal suspension of graphene oxide and in situ hydrothermal treatment. It provides an efficient and facile approach to yield nanocomposite with TiO2 nanoparticles uniformly embedded on graphene substrate. The electrochemical behavior of adenine and guanine at the TiO2-graphene nanocomposite modified glassy carbon electrode was investigated. The results show that the incorporation of TiO2 nanoparticles with graphene significantly improved the electrocatalytic activity and voltammetric response towards these species comparing with that at the graphene film. The TiO2-graphene based electrochemical sensor exhibits wide linear range of 0.5–200 μM with detection limit of 0.10 and 0.15 μM for adenine and guanine detection, respectively. The excellent performance of this electrochemical sensor can be attributed to the high adsorptivity and conductivity of TiO2-graphene nanocomposite, which provides an efficient microenvironment for electrochemical reaction of these purine bases.  相似文献   

17.
A facile solvent-based synthesis route based on the oxidation–reduction reaction between graphene oxide (GO) and SnCl2·2H2O has been developed to synthesize SnO2/graphene (SnO2/G) nanocomposites. The reduction of GO and the in situ formation of SnO2 nanoparticles were achieved in one step. Characterization by X-ray diffraction (XRD), ultraviolet-visible (UV–vis) absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) confirmed the feasibility of using the solvothermally treated reaction system to simultaneously reduce GO and form SnO2 nanoparticles with an average particle size of 10 nm. The electrochemical performance of SnO2/graphene showed an excellent specific capacitance of 363.3 F/g, which was five-fold higher than that of the as-synthesized graphene (68.4 F/g). The contributing factors were the synergistic effects of the excellent conductivity of graphene and the nanosized SnO2 particles.  相似文献   

18.
The novel conductive nanocomposite has been successfully prepared by emulsion polymerization. First, magnetite nanoparticles were synthesized via coprecipitation reaction. Then, poly (indole-co-thiophene)@Fe3O4 nanocomposite was prepared via emulsion copolymerization of indole and thiophene monomers using sodium dodecyl sulfate as an emulsifier and ammonium persulfate as an oxidant in the presence of Fe3O4 nanoparticles. Characterization of the synthesized copolymer, Poly (In-co-T), and its magnetic nanocomposite were studied by Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetric, UV-vis spectrophotometer, and vibrating sample magnetometer. Also, the electrical conductivity of copolymer and nanocomposite were determined by four-probe instrument. Results showed a synergic effect in thermal stability by good interaction between polymer chain and magnetic nanoparticles. The conductivity of the nanocomposite was higher than bare copolymer, and increase of nanoparticles content caused an increment in the conductivity of the nanocomposites. The applicable properties of proposed conductive nanocomposite as a base at electrochemical biosensing have been investigated.  相似文献   

19.
Tin oxide (SnO2)/graphene nanosheets (GNS) composite was prepared by a simple chemical-solution method as the catalyst support for direct ethanol fuel cells. Then the SnO2-GNS composites supporting Pd (Pd/SnO2-GNS) catalysts were synthesized by a microwave-assisted reduction process. The Pd/SnO2-GNS catalysts were characterized by using X-ray diffraction, transmission electron microscopy and energy-dispersive spectroscopy techniques. The electrocatalytic performances of Pd/SnO2-GNS catalysts for ethanol oxidation were studied by cyclic voltammetric and chronoamperometric measurements. It was found that compared with Pd/GNS, the Pd/SnO2-GNS catalyst showed superior electrocatalytic activity for ethanol oxidation when the mass ratio of SnCl2·2H2O precursor salt to graphite oxide was about 1:2.  相似文献   

20.
Binder-free combination of graphene nanosheets with oriented TiO2 nanotube arrays was designed and achieved via one-step facile electrodeposition. The structure and morphology of as-prepared composite graphene nanosheets/TiO2 nanotube arrays were studied in terms of SEM, FESEM, EDX, TEM, Raman and FTIR. Furthermore, the corresponding electrochemical performances were evaluated in terms of galvanostatic charge/discharge, cycle stability and AC impedance. As expected, the composite graphene nanosheets/TiO2 nanotube arrays displayed higher discharge capacity, cycle stability and Li+ diffusion coefficient than bare TiO2 nanotube arrays. High Li-storage activity, superior conductivity and large surface area of graphene nanosheets should be responsible for improved electrochemical performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号