首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1–2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.  相似文献   

2.
The two-stage Stirling-type pulse tube cryocooler (SPTC) has advantages in simultaneously providing the cooling powers at two different temperatures, and the capacity in distributing these cooling capacities between the stages is significant to its practical applications. In this paper, a theoretical model of the thermally-coupled two-stage SPTC without external precooling is established based on the electric circuit analogy with considering real gas effects, and the simulations of both the cooling performances and PV power distribution between stages are conducted. The results indicate that the PV power is inversely proportional to the acoustic impedance of each stage, and the cooling capacity distribution is determined by the cold finger cooling efficiency and the PV power into each stage together. The design methods of the cold fingers to achieve both the desired PV power and the cooling capacity distribution between the stages are summarized. The two-stage SPTC is developed and tested based on the above theoretical investigations, and the experimental results show that it can simultaneously achieve 0.69 W at 30 K and 3.1 W at 85 K with an electric input power of 330 W and a reject temperature of 300 K. The consistency between the simulated and the experimental results is observed and the theoretical investigations are experimentally verified.  相似文献   

3.
In this article we summarize experimental work on cryogen-free 3He/4He dilution refrigerators which, in addition to the dilution refrigeration circuit, are equipped with a 4He-1 K-stage. This type of DR becomes worth considering when high cooling capacities are needed at T  1 K to cool cold amplifiers and heat sink cables. In our application, the motivation for the construction of this type of cryostat was to do experiments on superconducting quantum circuits for quantum information technology and quantum simulations. In other work, DRs with 1 K-stage were proposed for astro-physical cryostats. For neutron scattering research, a top-loading cryogen-free DR with 1 K-stage was built which was equipped with a standard commercial dilution refrigeration insert.Cooling powers of up to 100 mW have been reached with our 1 K-stage, but higher refrigeration powers were achieved with more powerful pulse tube cryocoolers and higher 4He circulation rates in the 1 K-loop. Several different versions of a 1 K-loop have been tested in combination with a dilution refrigeration circuit.The lowest temperature of our DR was 4.3 mK.  相似文献   

4.
A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.  相似文献   

5.
Luwei Yang 《低温学》2008,48(11-12):492-496
Multi-stage Stirling-type pulse tube cryocoolers with high frequency (30–60 Hz) are one important direction in recent years. A two-stage Stirling-type pulse tube cryocooler with thermally coupled stages has been designed and established two years ago and some results have been published. In order to study the effect of first stage precooling temperature, related characteristics on performance are experimentally investigated. It shows that at high input power, when the precooling temperature is lower than 110 K, its effect on second stage temperature is quite small. There is also the evident effect of precooling temperature on pulse tube temperature distribution; this is for the first time that author notice the phenomenon. The mean working pressure is investigated and the 12.8 K lowest temperature with 500 W input power and 1.22 MPa average pressure have been gained, this is the lowest reported temperature for high frequency two-stage PTCS. Simulation has reflected upper mentioned typical features in experiments.  相似文献   

6.
A thermally coupled two-stage Stirling-type pulse tube cryocooler (PTC) with inertance tubes as phase shifters has been designed, manufactured and tested. In order to obtain a larger phase shift at the low acoustic power of about 2.0 W, a cold inertance tube as well as a cold reservoir for the second stage, precooled by the cold end of the first stage, was introduced into the system. The transmission line model was used to calculate the phase shift produced by the cold inertance tube. Effect of regenerator material, geometry and charging pressure on the performance of the second stage of the two-stage PTC was investigated based on the well known regenerator model REGEN. Experimental results of the two-stage PTC were carried out with an emphasis on the performance of the second stage. A lowest cooling temperature of 23.7 K and 0.50 W at 33.9 K were obtained with an input electric power of 150.0 W and an operating frequency of 40 Hz.  相似文献   

7.
A 300 Hz pulse tube cryocooler (PTC) driven by a three-stage traveling-wave thermoacoustic heat engine (TSTHE) has been proposed and studied in this paper. In the configuration, three identical thermoacoustic heat engine units are evenly incorporated in a closed traveling-wave loop, in which three pulse tube cryocoolers are connected to the branch of each thermoacoustic heat engine. Compared with the conventional thermoacoustic heat engine which involves a traveling-wave loop and a long resonator, it has advantages of compact size and potentially high thermal efficiency. A TSTHE–PTC system was designed, optimized and studied in detail based on the thermoacoustic theory. Firstly, numerical simulation was conducted to design the system thus the optimum structure parameters of the system were obtained. With the operating condition of 4 MPa mean pressure and high working frequency, a cooling power of 7.75 W at 77 K and an overall relative Carnot efficiency of 11.78% were achieved. In order to better understand the energy conversion characteristics of the system, distributions of key parameters such as acoustic work, phase difference, dynamic pressure, volume flow rate and exergy loss were presented and discussed. Then, the coupling mechanism of the system was investigated. In addition, influence of coupling position on the system performance was further studied.  相似文献   

8.
Haizheng Dang 《低温学》2012,52(4-6):216-220
Several 40 K single-stage coaxial high frequency pulse tube cryocoolers (PTCs) have been developed to provide reliable and low-noise cooling for GaAs/AlGaAs Quantum-Well infrared photodetectors (QWIPs). The inertance tubes together with the gas reservoir become the only phase shifter to guarantee the required long-term stability. The mixed regenerator consisting of three segments has been developed to enhance the overall regenerator performance. At present, the cooler prototype has achieved a no-load temperature of 29.7 K and can typically provide 860 mW cooling at 40 K with 200 W electric input power rejecting at 300 K. The performance characteristics such as the temperature stability and ambient temperature adaptability are also presented.  相似文献   

9.
This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1 K is obtained with a pressure ratio of 1.18, a working frequency of 3 Hz and an average pressure of 2.45 MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.  相似文献   

10.
Xi Chen  Yi Nong Wu  Hua Zhang  Nan Chen 《低温学》2009,49(3-4):120-132
Due to entire pneumatic connection between free piston and free displacer, the motion parameters of them including amplitude and phase shift can actually impact the cooling capacity and overall performance of cryocooler obviously. In this study, the procedure of design and manufacture pneumatic free piston and free displacer (FPFD) Stirling cryocooler had firstly been described in details. Then in order to accomplish study, the experimental bench has been set up based on 80 K@1 W Stirling cryocooler. The effect of the thermodynamic and pneumatic parameters including charging pressure, natural frequency of displacer, damping coefficient of displacer, working frequency on the pressure, displacement and displacer phase shift has been investigated, respectively by means of experimental and theoretical method. In particular, the variation of damping is realized by adjusting the width of clearance cut on the additional damping component, which is screwed on the displacer rod. Similarly, natural frequency of displacer is changed by the extra mass connected on the displacer. Due to the results of experimental study, the optimum working conditions of this Stirling cryocooler for 80 K cold tip temperature are as follows: charge pressure 15 bar, natural frequency of displacer 46 Hz, width of clearance 300 μm and working frequency 43 Hz. In agreement with the optimum working conditions, neighborhood interval of 90° is the ideal working domain for displacement phase shift. Meanwhile, the displacer phase shift should approach to 0°as near as possible and pressure phase shift should also be as small as possible, which have linear relation with non-dimensional damping characteristic of compressor. In view of theoretical study, the expressions of three phase shifts deduced from thermodynamic equation of piston and displacer respectively are expressed as the functions of working parameters, which are verified by the experimental data and consequently can be used as the powerful guidance to optimum seeking.  相似文献   

11.
This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.  相似文献   

12.
This research paper focuses on the performance prediction and its validation via experimental investigation of a Stirling-type pulse tube refrigerator (PTR) equipped with a cold linear compressor. When the working gas is compressed at cryogenic temperature, the acoustic power (PV power) can be directly transmitted through the regenerator to the pulsating tube without experiencing unnecessary precooling process. The required PV power generated by the linear compressor, furthermore, can be significantly diminished due to the relatively small specific volume of the working gas at low temperature. The PTR can reach lower temperature efficiently with higher heat lift at the corresponding temperature than other typical single-stage Stirling-type PTRs. Utilizing a cryogenic reservoir as a warm end and regulating the entire operating temperature range of the PTR will enable a PTR to operate efficiently under space environment.In this research, the experimental validation as a proof of concept was carried out to demonstrate the capability of PTR operating between 80 K and 40 K. The linear compressor was submerged in a liquid nitrogen bath and the lowest temperature was measured as 38.5 K. The test results were analyzed to identify loss mechanisms with the simple numerical computation (linear model) which considers the dynamic characteristics of the cold linear compressor with thermo-hydraulic governing equations for each of sub components of the PTR. All the mass flows and pressure waves were assumed to be sinusoidal.  相似文献   

13.
Temperature-dependent optical properties of bulk Nd3+:LaF3 crystals are reported. A blue-shift in the photoluminescence excitation (PLE) spectrum is observed at 30 K. The 173.2-nm emission peak wavelength at 300 K shifted to 172.8 nm at 30 K, consistent with the 6-nm blue-shift in transmission edge and 2437-cm−1 increase in the lowest energy level of the 4f25d configuration. Thermal broadening of the 5d–4f emission bands with increasing temperature is also observed as the dip at around 178.5 nm present at 30 K disappears at 300 K. A smaller spectral overlap between the PLE and emission spectra is observed as temperature is decreased. Our results suggest that absorption cross-section at the peak fluorescence wavelength is expected to decrease at 30 K.  相似文献   

14.
An experimental investigation is conducted to study the performance of a cryogenic oscillating heat pipe (OHP) using neon as the working fluid. The stainless steel OHP with an inner diameter of 0.9 mm has 4 turns, and the lengths of the evaporator, condenser section and adiabatic section are 35 mm, 35 mm and 95 mm, respectively. The temperature of the evaporator and condenser and the pressure of the OHP are measured. The results show that the cooling down process of the OHP from room temperature to the working temperature can be significantly accelerated by charging with neon. During the pseudo steady-state operation process, the temperature of evaporator and the pressure of the OHP increase with increasing heat input. When the dry out appears, the temperature of evaporator rises quickly, and the pressure of the OHP drops sharply. In addition, the effective thermal conductivity of the OHP at the different heat inputs and the different filling ratios is calculated. It increases with increasing heat input, and there exists an optimum filling ratio which makes the maximum effective thermal conductivity. For this OHP, the optimum filling ratio is 24.5%, at which the effective thermal conductivity is 6100–22,180 W/m K.  相似文献   

15.
G.Y. Yu  X.T. Wang  W. Dai  E.C. Luo 《低温学》2012,52(4-6):212-215
High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.  相似文献   

16.
J. Lu  R.P. Walsh  K. Han 《低温学》2009,49(3-4):133-137
High manganese austenitic stainless steel JK2LB is developed by the Japan Atomic Energy Agency for applications as a conduit material for superconducting cable-in-conduit conductors for the magnets of international thermonuclear experimental reactor (ITER). The low temperature physical property data of this material are very important to ITER magnet design. Therefore in this paper, our measurements of the physical properties including room temperature Young’s modulus and thermal expansion, magnetization, thermal conductivity, specific heat and resistivity at temperatures from room temperature down to 2 K are reported. We found that JK2LB is antiferromagnetic at low temperatures with a Néel temperature of 240 K. This is consistent with a prediction based on the chemical composition of the austenite stainless steel. The antiferromagnetic phase transition is also evident in the resistivity vs. T curve. Nevertheless, no anomalies are observable in its specific heat and thermal conductivity from 2 K to 300 K. The thermal expansion of this steel between 10 K and 300 K is about 0.22%. Its Young’s modulus, specific heat and thermal conductivity are comparable to that of 316LN stainless steel.  相似文献   

17.
METIS, the Mid-Infrared E-ELT Imager and Spectrograph, is one of the proposed instruments in E-ELT (European Extremely Large Telescope). Its infrared detectors require multiple operating temperatures below 77 K. Therefore, active coolers have to be deployed to provide sub-liquid-nitrogen (sub-LN2) temperature cooling. However, the sensitive imaging optical detecting system also demands very low levels of vibration. Thus, the University of Twente proposed a vibration-free cooling technique based on physical sorption. In this paper, we describe the baseline design of such a sorption-based Joule-Thomson cooler chain for the METIS instrument, that is able to deliver cooling powers of 0.4 W at 8 K, 1.1 W at 25 K and 1.4 W at 40 K from a 70-K heat sinking. This design is based on working fluid selection, cascading cooler stages and operating parameter optimization. Also, the performance of the resulting cooler design is analyzed.  相似文献   

18.
Astro-H is the Japanese X-ray astronomy satellite planned for launch in 2014. The Soft X-ray Spectrometer (SXS) onboard Astro-H, is a high energy resolution spectrometer utilizing an X-ray micro-calorimeter array, which is operated at 50 mK by the ADR with the 30-L superfluid liquid helium (LHe). The mechanical cryocoolers, 4 K-class Joule Thomson (JT) cooler and 20 K-class double-staged Stirling (2ST) cooler are key components to achieve a LHe lifetime for over 3 years in orbit (5 years as a goal). Based on the existing cryocoolers onboard Akari (2006) and JEM/SMILES (2009), modifications for higher cooling power and reliability had been investigated. In the present development phase, the Engineering Models (EMs) of these upgraded cryocoolers are fabricated to carry out verification tests for cooling performance, mechanical performance and lifetime. Nominal cooling power of 200 mW at 20 K for the 2ST cooler and 40 mW at 4.5 K for the JT cooler were demonstrated with temperature and power margin. Mechanical performance test for the 2ST cooler units proves tolerability for pyro shock and vibration environment of the Astro-H criteria. Continuous running of the 4 K-class JT cooler combined with the 2ST precooler for lifetime test has achieved over 5000 h without any degradation of cooling performance.  相似文献   

19.
The design and performance of a fast thermal response miniature (24 mm outer diameter by 30 mm long) Chromium Potassium Alum (CPA) salt pill is described. The need for a fast thermal response has been driven by the development of a continuously operating millikelvin cryocooler (mKCC) which uses 2 T superconducting magnets that can be ramped to full field in 30 s. The consequence of magnetising and demagnetising the CPA pill in such a short time is that thermal boundary resistance and eddy current heating have a significant impact on the performance of the pill, which was investigated in detail using modelling. The complete design of a prototype CPA pill is described in this paper, including the methods used to minimise thermal boundary resistance and eddy current heating as well as the manufacturing and assembly processes. The performance of the prototype CPA pill operated from a 3.6 K bath is presented, demonstrating that a complete CPA cycle (magnetising, cooling to bath and demagnetising) can be accomplished in under 2.5 min, with magnetisation and demagnetisation taking just 30 s each. The cold finger base temperature of the prototype varies with demagnetisation speed as a consequence of eddy current heating; for a 30 s demagnetisation, a base temperature of 161 mK is obtained, whilst for a 5 min demagnetisation, a base temperature of 149 mK was measured (both from a 3.6 K and 2 T starting position). The measured hold times of the CPA pill at 200 mK, 300 mK, and 1 K are given, proving that the hold time far exceeds the recycle time and demonstrating the potential for continuous operation when two ADRs are used in a tandem configuration. The ease and speed at which the CPA pill temperature can be changed and controlled when stepping between operating temperatures in the range of 200 mK to 4 K using a servo control program is also shown, once again highlighting the excellent thermal response of the pill. All of the test results are in good agreement with the modelling used to design the CPA pill, giving good confidence in our ability to understand and estimate the effects of eddy current heating and thermal boundary resistance. To conclude, the design for the CPA pill to be used in the mKCC (which is heavily based on the design of the prototype) is presented.  相似文献   

20.
Micromachined Joule–Thomson (JT) coolers are attractive for cooling small electronic devices. However, microcoolers operated with pure gases, such as nitrogen gas require high pressures of about 9 MPa to achieve reasonable cooling powers. Such high pressures severely add complexity to the development of compressors. To overcome this disadvantage, we combined a JT microcooler with a thermoelectric (TE) pre-cooler to deliver an equivalent cooling power with a lower pressure or, alternatively, a higher cooling power when operating with the same pressure. This hybrid microcooler was operated with nitrogen gas as the working fluid at a low pressure of 0.6 MPa. The cooling power of the microcooler at 101 K operating with a fixed high pressure of 8.8 MPa increased from 21 to 60 mW when the precooling temperature was reduced by the thermoelectric cooler from 295 to 250 K. These tests were simulated using a dynamic numerical model and the accuracy of the model was verified through the comparison between experimental and simulation results. Based on the model, we found the high pressure of the microcooler can be reduced from 8.8 to 5.5 MPa by lowering the precooling temperature from 295 to 250 K. Moreover, the effect of TE cooler position on the performance of the hybrid microcooler was evaluated through simulation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号