首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Genetic Relatedness of Type 1 and Type 2 Herpes Simplex Viruses   总被引:38,自引:26,他引:12       下载免费PDF全文
The extent of homology between herpes simplex virus(1) and(2) (HSV-1 and HSV-2) deoxyribonucleic acid (DNA) was measured in two ways: (i) by determination of the relative rate of hybridization of labeled HSV-1 and HSV-2 DNA to excess unlabeled HSV-1 or HSV-2 DNA immobilized on filters and (ii) by determination of the rate of hybridization of labeled HSV-1 and HSV-2 DNA to excess unlabeled HSV-1 or HSV-2 DNA in solution. Approximately 40% of HSV-1 and HSV-2 DNA is homologous at hybridization temperatures 25 C below the melting temperature (T(m)) of HSV DNA (liquid-filter annealing). Lowering the temperature to 34 C below the T(m) increased the extent of homology to 46% (liquid annealing). The extent of base-pairing in HSV-1-HSV-2 heteroduplex DNA was determined by thermal chromatography on hydroxyapatite. Heteroduplexes of HSV-1 and HSV-2 DNA eluted in a single peak whose midpoint (Te(50)) was 10 C below that of the homoduplex. Conspicuously absent were heteroduplexes that eluted at more than 15 C below the Te(50) of the homoduplex. The data indicate the existence of a variable region of DNA (54%) with very little, if any, homology and an invariable region (46%) with relatively good (85%) matching of base pairs.  相似文献   

3.
We have reported previously that the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) fused with green fluorescent protein (GFP) is localized in the nucleus of HSV-1 TK-GFP gene-transfected cells (Degrève et al. (1998) J. Virol. 72, 9535-9543). Deletion of the N-terminal 34 amino acids or selective mutation of the nonapeptide (25)RRTALRPRR(33), located in the N-terminal region of HSV-1 TK, resulted in the loss of the specific nuclear localization of HSV-1 TK. Utilizing information on the crystallographic structure of HSV-1 TK, we have now identified three additional putative nuclear localization signals and evaluated their potential role in the nuclear trafficking of HSV-1 TK by site-directed mutagenesis. We found that the sites containing the amino acids R236-R237 and K317-R318 are absolutely required for specific nuclear targeting of HSV-1 TK. The K317-R318 region, located at the interface between the two monomers in the dimeric HSV-1 TK structure, could act as a nuclear localization signal for monomeric HSV-1 TK. Alternatively, crystallographic data indicate that R318 might be essential for the formation of the TK dimer, and therefore it is required if HSV-1 TK is transported as a dimer.  相似文献   

4.
We performed affinity chromatography and immunoprecipitation experiments to determine whether cells infected with herpes simplex virus type 2 (HSV-2) expressed a glycoprotein that was functionally and antigenically related to the HSV-1 Fc-binding glycoprotein designated gE. We found that a protein from extracts of HSV-2-infected HEp-2 cells bound specifically to an Fc affinity column and that the electrophoretic mobility of this protein in sodium dodecyl sulfate-acrylamide gels was slightly less than the mobility of HSV-1 gE. Immunoprecipitation experiments performed with an antiserum prepared against HSV-1 gE revealed that (i) extracts from HSV-2-infected cells contained a glycoprotein that was antigenically related to HSV-1 gE; (ii) the electrophoretic mobility of the HSV-2 gE was indistinguishable from the mobility of the HSV-2 Fc-binding protein; (iii) the antiserum reacted with both newly synthesized transient forms and stable fully processed forms of both HSV-1 gE and HSV-2 gE; and (iv) the transient and stable forms of HSV-2 gE all had lower electrophoretic mobilities than their HSV-1 counterparts. Electrophoretic analyses of gE precipitated from extracts of HEp-2 cells infected with two sets of HSV-1 x HSV-2 intertypic recombinant viruses suggested that the gene for gE is located at the right end of the HSV genome (0.85 to 0.97 map units) in the unique portion of the S component.  相似文献   

5.
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are among the most "successful" pathogens and code for a variety of proteins to direct the apoptosis/necrosis responses of the cells they infect. Nitric oxide (NO) is an important intracellular signaling molecule in pathological processes. Acyclovir (ACV) is a chain terminator that targets the viral DNA polymerase as an antiviral agent. In this study, NO signals, and apoptosis/necrosis responses of HEp-2 cells were compared when infected by HSV-1 and -2 for 24 hours against non toxic doses (starting from 48.8, 24.4, 12.2, 6.1, 3 to 1.5 microg/mL) of ACV. In 48.8, 24.4 and 12.2 microg/mL of ACV, HSV-1 had an "upregulating effect" whereas HSV-2 had a "downregulating effect" on NO production, and in 6.1, 3 and 1.5 microg/mL of ACV HSV-1 had a "down-regulating effect" whereas HSV-2 had an "upregulating effect" on NO responses (HSV-1 had a "downregulating effect" on NO production whereas HSV-2 had an "upregulating effect" on NO production without any ACV). In 48.8, 24.4 and 12.2 microg/mL of ACV, HSV-1 had an "anti-apoptotic effect" whereas HSV-2 had a stimulation on "apoptotic effect", and in 6.1, 3 and 1.5 microg/mL of ACV HSV-1 had an "apoptotic effect" and HSV-2 turned to "its natural viral apoptotic effect level" (HSV-1 had an "natural viral apoptotic effect" whereas HSV-2 had a "natural viral apoptotic effect" on apoptosis response without any ACV). In 48.8, and 24.4 microg/mL of ACV, HSV-1 had significant "necrotic effect" on necrotic cellular death, "necrosis" increased in 12.2, 6.1, 3 and 1.5 microg/mL of ACV (HSV-1 had a negligible "necrotic effect" on HEp-2 cells alone), and HSV-2 had a "natural viral necrotic effect" alone; and also in all non toxic ACV concentrations. These results showed that HSV-1 and -2 had different "strategies" on apoptosis/necrosis and NO with and without non toxic ACV. These differences deserve further studies in order to explain the interactions between apoptotic/anti apoptotic, necrotic genes and NO, and ACV in HSV-1 and HSV-2 infections respectively.  相似文献   

6.
Herpes simplex virus (HSV) strains HSV type 1 (HSV-1) KOS and HSV-2 186 are representative of delayed and early shutoff strains, respectively, with regard to their ability to inhibit protein synthesis in Friend erythroleukemia cells. When these cells were simultaneously infected with HSV-1 KOS and HSV-2 186, HSV-1 KOS interfered with the rapid suppression of globin synthesis induced by HSV-2 186. The observed interference was competitive and not due to exclusion of HSV-2 by HSV-1 at the level of adsorption. Furthermore, UV-irradiated HSV-1 KOS was also effective at interfering with the early shutoff function of HSV-2 186, indicating that a virion component is responsible for the observed interference.  相似文献   

7.
Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.  相似文献   

8.
Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.  相似文献   

9.
Sainz B  Halford WP 《Journal of virology》2002,76(22):11541-11550
In vivo evidence suggests that T-cell-derived gamma interferon (IFN-gamma) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-gamma is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-gamma synergizes with the innate IFNs (IFN-alpha and -beta) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-beta or IFN-gamma inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-beta and IFN-gamma inhibits HSV-1 replication by approximately 1,000-fold. Treatment with IFN-beta and IFN-gamma does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-beta and IFN-gamma to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-beta and IFN-gamma inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-beta and IFN-gamma reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by approximately 200-fold. Thus, simultaneous activation of IFN-alpha/beta receptors and IFN-gamma receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-alpha or IFN-beta is produced by most cells as an innate response to virus infection, the results imply that IFN-gamma secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.  相似文献   

10.
The early events mediating herpes simplex virus type 1 (HSV-1) infection include virion attachment to cell surface heparan sulfates and subsequent penetration. Recent evidence has suggested that the high-affinity fibroblast growth factor (FGF) receptor mediates HSV-1 entry. This report presents three lines of experimental evidence showing that the high-affinity FGF receptor is not required for HSV-1 infection. First, rat L6 myoblasts lacking FGF receptors were as susceptible to HSV-1 infection as L6 cells genetically engineered to express the FGF receptor. Second, a soluble FGF receptor fragment that inhibited FGF binding and receptor activation did not inhibit HSV-1 infection. Finally, basic FGF (but not acidic FGF) inhibited HSV-1 infection in L6 cells lacking FGF receptors, presumably by blocking cell surface heparan sulfates also required for HSV-1 infection. These results show that the high-affinity FGF receptor is not required for HSV-1 infection but instead that specific low-affinity basic FGF binding sites are used for HSV-1 infection.  相似文献   

11.
Targeting apoptosis in neurological disease using the herpes simplex virus   总被引:2,自引:2,他引:0  
Herpes Simplex Viruses type 1 (HSV-1) and 2 (HSV-2) cause central nervous system (CNS) disease ranging from benign aseptic meningitis to fatal encephalitis. In adults, CNS infection with HSV-2 is most often associated with aseptic meningitis while HSV-1 frequently produces severe, focal encephalitis associated with high mortality and morbidity. Recent studies suggested that the distinct neurological outcome of CNS infection with the two viruses may be due to their distinct modulation of apoptotic cell death: HSV-1 triggers neuronal apoptosis, while HSV-2 is neuroprotective. Apoptosis also occurs in the etiology of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Down's syndrome, and determines the loss of specific neuronal populations and the decline in cognitive functions. Notwithstanding, the therapy of these disorders may rely on the use of replication-defective HSV-1 vectors to deliver anti-apoptotic transgenes to the CNS. However, the recent discovery of a neuroprotective activity innate to the HSV-2 genome (the ICP10 PK gene) suggests that: i) ICP10 PK may constitute a novel therapeutic approach by targeting both the apoptotic cell death and the cognitive decline, and ii) HSV-2 may be more suitable than HSV-1 as a vector for targeting neuronal disease.  相似文献   

12.
13.
Nucleotide sequence and mRNA localization studies have allowed the prediction of the amino acid sequence of herpes simplex virus type 1 (HSV-1) glycoprotein C (gC). We immunized a rabbit with a conjugate of bovine serum albumin and a synthetic peptide having the same sequence as that deduced for amino acids 128 through 139 of HSV-1 gC. A very similar amino acid sequence has been predicted to exist in the related product, herpes simplex virus type 2 (HSV-2) gC, which was formerly designated gF. Preparations of crude antiserum and immunoaffinity-purified antibodies were obtained and shown to react in enzyme-linked immunosorbent assays with purified HSV-1 gC and HSV-2 gC. Although these antibodies did not detectably immunoprecipitate proteins from radiolabeled infected cell extracts, they reacted with HSV-1 gC and HSV-2 gC that were electrophoretically transferred to nitrocellulose membranes from polyacrylamide gels. These results confirm that HSV-1 gC and HSV-2 gC are immunologically related and also define a specific portion of HSV-1 gC that is conserved.  相似文献   

14.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

15.
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.  相似文献   

16.
J A Blaho  C S Zong    K A Mortimer 《Journal of virology》1997,71(12):9828-9832
At least eight herpes simplex virus type 1 (HSV-1) and five HSV-2 proteins were tyrosine phosphorylated in infected cells. The first viral tyrosine phosphoprotein identified was the HSV-1 regulatory protein ICP22. Also, two novel phosphotyrosine proteins were bound by anti-ICP22 antibodies. H(R22) is a cellular protein, while the F(R10) protein is observed only in HSV-1-infected cells.  相似文献   

17.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

18.
19.
Interferon (IFN) type I (alpha/beta IFN [IFN-alpha/beta]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-gamma) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to 10(4) PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-gamma-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity.  相似文献   

20.
Transformation of mouse cells (Ltk(-)) and human cells (HeLa Bu) from a thymidine kinase (TK)-minus to a TK(+) phenotype (herpes simplex virus [HSV]-transformed cells) has been induced by infection with ultraviolet-irradiated HSV type 2 (HSV-2), as well as by HSV type 1 (HSV-1). Medium containing methotrexate, thymidine, adenine, guanosine, and glycine was used to select for cells able to utilize exogenous thymidine. We have determined the kinetics of thermal inactivation of TK from cells lytically infected with HSV-1 or HSV-2 and from HSV-1- and HSV-2-transformed cells. Three hours of incubation at 41 C produces a 20-fold decrease in the TK activity of cell extracts from HSV-2-transformed cells and Ltk(-) cells lytically infected with HSV-2. The same conditions produce only a twofold decrease in the TK activities from HSV-1-transformed cells and cells lytically infected with HSV-1. This finding supports the hypothesis that an HSV structural gene coding for TK has been incorporated in the HSV-transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号