首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider stationary bootstrap approximation of the non‐parametric kernel estimator in a general kth‐order nonlinear autoregressive model under the conditions ensuring that the nonlinear autoregressive process is a geometrically Harris ergodic stationary Markov process. We show that the stationary bootstrap procedure properly estimates the distribution of the non‐parametric kernel estimator. A simulation study is provided to illustrate the theory and to construct confidence intervals, which compares the proposed method favorably with some other bootstrap methods.  相似文献   

2.
Abstract. We study an at‐most‐one‐change time‐series model with an abrupt change in the mean and dependent errors that fulfil certain mixing conditions. We obtain confidence intervals for the unknown change‐point via bootstrapping methods. Precisely, we use a block bootstrap of the estimated centred error sequence. Then, we reconstruct a sequence with a change in the mean using the same estimators as before. The difference between the change‐point estimator of the resampled sequence and the one of the original sequence can be used as an approximation of the difference between the real change‐point and its estimator. This enables us to construct confidence intervals using the empirical distribution of the resampled time series. A simulation study shows that the resampled confidence intervals are usually closer to their target levels and at the same time smaller than the asymptotic intervals.  相似文献   

3.
The aim of this article is to introduce new resampling scheme for nonstationary time series, called generalized resampling scheme (GRS). The proposed procedure is a generalization of well known in the literature subsampling procedure and is simply related to existing block bootstrap techniques. To document the usefulness of GRS, we consider the example of model with almost periodic phenomena in mean and variance function, where the consistency of the proposed procedure was examined. Finally, we prove the consistency of GRS for the spectral density matrix for nonstationary, multivariate almost periodically correlated time series. We consider both zero mean and non‐zero mean case. The consistency holds under general assumptions concerning moment and α‐mixing conditions for multivariate almost periodically correlated time series. Proving the consistency in this case poses a difficulty since the estimator of the spectral density matrix can be interpreted as a sum of random matrixes whose dependence grow with the sample size.  相似文献   

4.
When time‐series data contain a periodic/seasonal component, the usual block bootstrap procedures are not directly applicable. We propose a modification of the block bootstrap – the generalized seasonal block bootstrap (GSBB) – and show its asymptotic consistency without undue restrictions on the relative size of the period and block size. Notably, it is exactly such restrictions that limit the applicability of other proposals of block bootstrap methods for time series with periodicities. The finite‐sample performance of the GSBB is also illustrated by means of a small simulation experiment.  相似文献   

5.
A unit root test is proposed for time series with a general nonlinear deterministic trend component. It is shown that asymptotically the pooled OLS estimator of overlapping blocks filters out any trend component that satisfies some Lipschitz condition. Under both fixed‐b and small‐b block asymptotics, the limiting distribution of the t‐statistic for the unit root hypothesis is derived. Nuisance parameter corrections provide heteroskedasticity‐robust tests, and serial correlation is accounted for by pre‐whitening. A Monte Carlo study that considers slowly varying trends yields both good size and improved power results for the proposed tests when compared to conventional unit root tests.  相似文献   

6.
This paper proposes a new nonparametric spectral density estimator for time series models with general autocorrelation. The conventional nonparametric estimator that uses a positive kernel has mean squared error no better than n?4/5. We show that the best implementation of our estimator has mean squared error of order n?8/9, provided there is sufficient smoothness present in the spectral density. This is, of course, achieved by bias reduction; however, unlike most other bias reduction methods, like the kernel method with higher‐order kernels, our procedure ensures a positive definite estimate. Our method is a generalization of the well‐known prewhitening method of spectral estimation; we argue that this can best be interpreted as multiplicative bias reduction. Higher‐order expansions for the proposed estimator are derived, providing an improved bandwidth choice that minimizes the mean squared error to the second order. A simulation study shows that the recommended prewhitened kernel estimator reduces bias and mean squared error in spectral density estimation.  相似文献   

7.
The rescaled fourth‐order cumulant of the unobserved innovations of linear time series is an important parameter in statistical inference. This article deals with the problem of estimating this parameter. An existing nonparametric estimator is first discussed, and its asymptotic properties are derived. It is shown how the autocorrelation structure of the underlying process affects the behaviour of the estimator. Based on our findings and on an important invariance property of the parameter of interest with respect to linear filtering, a pre‐whitening‐based nonparametric estimator of the same parameter is proposed. The estimator is obtained using the filtered time series only; that is, an inversion of the pre‐whitening procedure is not required. The asymptotic properties of the new estimator are investigated, and its superiority is established for large classes of stochastic processes. It is shown that for the particular estimation problem considered, pre‐whitening can reduce the variance and the bias of the estimator. The finite sample performance of both estimators is investigated by means of simulations. The new estimator allows for a simple modification of the multiplicative frequency domain bootstrap, which extends its considerable range of validity. Furthermore, the problem of testing hypotheses about the rescaled fourth‐order cumulant of the unobserved innovations is also considered. In this context, a simple test for Gaussianity is proposed. Some real‐life data applications are presented.  相似文献   

8.
In this article, we study the robust estimation for the covariance matrix of stationary multi‐variate time series. As a robust estimator, we propose to use a minimum density power divergence estimator (MDPDE) proposed by Basu et al. (1998) . Particularly, the MDPDE is designed to perform properly when the time series is Gaussian. As a special case, we consider the robust estimator for the autocovariance function of univariate stationary time series. It is shown that the MDPDE is strongly consistent and asymptotically normal under regularity conditions. Simulation results are provided for illustration.  相似文献   

9.
Abstract. In this article, we study and compare the properties of several bootstrap unit‐root tests recently proposed in the literature. The tests are Dickey–Fuller (DF) or Augmented DF, based either on residuals from an autoregression and the use of the block bootstrap or on first‐differenced data and the use of the stationary bootstrap or sieve bootstrap. We extend the analysis by interchanging the data transformations (differences vs. residuals), the types of bootstrap and the presence or absence of a correction for autocorrelation in the tests. We show that two sieve bootstrap tests based on residuals remain asymptotically valid. In contrast to the literature which focuses on a comparison of the bootstrap tests with an asymptotic test, we compare the bootstrap tests among themselves using response surfaces for their size and power in a simulation study. This study leads to the following conclusions: (i) augmented DF tests are always preferred to standard DF tests; (ii) the sieve bootstrap performs better than the block bootstrap; (iii) difference‐based tests appear to have slightly better size properties, but residual‐based tests appear more powerful.  相似文献   

10.
We introduce a moving Fourier transformation for locally stationary time series, which captures the time‐varying spectral density in a similar manner as the classical Fourier transform does for stationary time series. In particular, the resulting Fourier coefficients as well as moving local periodograms are shown to be (almost all) asymptotically uncorrelated. The moving local periodogram is obtained by thinning the local periodogram to avoid multiple information present at different but close points in time. We obtain consistent estimators for the local spectral density at each point in time by smoothing the moving local periodogram. Furthermore, the moving Fourier coefficients, respectively periodograms, are well suited to adapt stationary frequency domain bootstrap methods to the locally stationary case. For the wild time frequency toggle bootstrap, it is shown that the corresponding bootstrap covariance of a global locally stationary bootstrap samples captures the time‐varying covariance structure of the underlying locally stationary time series correctly. Furthermore, this bootstrap in addition to adaptations of other frequency domain bootstrap methods is used in a simulation study to obtain uniform confidence bands for the time‐varying autocorrelation at lag 1. Finally, this methodology is applied to a wind data set.  相似文献   

11.
The traditional and most used measure for serial dependence in a time series is the autocorrelation function. This measure gives a complete characterization of dependence for a Gaussian time series, but it often fails for nonlinear time series models as, for instance, the generalized autoregressive conditional heteroskedasticity model (GARCH), where it is zero for all lags. The autocorrelation function is an example of a global measure of dependence. The purpose of this article is to apply to time series a well‐defined local measure of serial dependence called the local Gaussian autocorrelation. It generally works well also for nonlinear models, and it can distinguish between positive and negative dependence. We use this measure to construct a test of independence based on the bootstrap technique. This procedure requires the choice of a bandwidth parameter that is calculated using a cross validation algorithm. To ensure the validity of the test, asymptotic properties are derived for the test functional and for the bootstrap procedure, together with a study of its power for different models. We compare the proposed test with one based on the ordinary autocorrelation and with one based on the Brownian distance correlation. The new test performs well. Finally, there are also two empirical examples.  相似文献   

12.
We address the problem of estimating the autocovariance matrix of a stationary process. Under short range dependence assumptions, convergence rates are established for a gradually tapered version of the sample autocovariance matrix and for its inverse. The proposed estimator is formed by leaving the main diagonals of the sample autocovariance matrix intact while gradually down‐weighting off‐diagonal entries towards zero. In addition, we show the same convergence rates hold for a positive definite version of the estimator, and we introduce a new approach for selecting the banding parameter. The new matrix estimator is shown to perform well theoretically and in simulation studies. As an application, we introduce a new resampling scheme for stationary processes termed the linear process bootstrap (LPB). The LPB is shown to be asymptotically valid for the sample mean and related statistics. The effectiveness of the proposed methods are demonstrated in a simulation study.  相似文献   

13.
Abstract. We consider multivariate density estimation when the assumptions of identically distributed data or stationary data are relaxed to the assumptions of locally identically distributed data or locally stationary data. We assume that the distribution of the data is changing continuously as function of time. To estimate densities non‐parametrically with these local regularity conditions, we need time localization in addition to the usual space localization. We define a time‐localized kernel estimator that estimates the density non‐parametrically at any given point of time. The consistency of the time‐localized kernel estimator is proved and the rates of convergence of the estimator are derived under conditions on the β‐and α‐mixing coefficients. Both the time‐series setting and spatial setting are covered.  相似文献   

14.
In this paper we propose a new procedure for detecting additive outliers in a univariate time series based on a bootstrap implementation of the test of Perron and Rodríguez (2003, Journal of Time Series Analysis 24, 193‐220). This procedure is used to test the null hypothesis that a time series is uncontaminated by additive outliers against the alternative that one or more additive outliers are present. We demonstrate that the existing tests of, inter alia, Vogelsang (1999, Journal of Time Series Analysis 20, 237–52) Perron and Rodríguez (2003) and Burridge and Taylor (2006, Journal of Time Series Analysis 27, 685–701) are unable to strike a balance between size and power when the order of integration of a time series is unknown and the time series is driven by innovations drawn from an unknown distribution. We show that the proposed bootstrap testing procedure is able to control size to such an extent that its size properties are comparable with the robust test of Burridge and Taylor (2006) when the distribution of the innovations is not assumed known, whilst maintaining power in the Gaussian environment close to that of the test of Perron and Rodríguez (2003).  相似文献   

15.
Abstract. We propose simple parametric and nonparametric bootstrap methods for estimating the prediction mean square error (PMSE) of state vector predictors that use estimated model parameters. As is well known, substituting the model parameters by their estimates in the theoretical PMSE expression that assumes known parameter values results in underestimation of the true PMSE. The parametric method consists of generating parametrically a large number of bootstrap series from the model fitted to the original series, re‐estimating the model parameters for each series using the same method as used for the original series and then estimating the separate components of the PMSE. The nonparametric method generates the series by bootstrapping the standardized innovations estimated for the original series. The bootstrap methods are compared with other methods considered in the literature in a simulation study that also examines the robustness of the various methods to non‐normality of the model error terms. Application of the bootstrap method to a model fitted to employment ratios in the USA that contains 18 unknown parameters, estimated by a three‐step procedure yields unbiased PMSE estimators.  相似文献   

16.
In this paper, we deal with autoregressive processes with random coefficients. We propose a least‐squares estimator for the fourth‐order moments of both the innovation and disturbance noises and state its consistency. The main theme of the paper is the development of bootstrap procedures for the autoregressive parameter. We show how to obtain approximative residuals for the process even though the standard method for autoregressive processes does not work in this context since one then would obtain convoluted residuals of the innovation and disturbance noises. These ideas lead to a modification of the classical residual bootstrap for autoregressive processes. The consistency of the bootstrap procedure is established. Further, the estimators proposed in the first part are used to form two wild bootstrap modifications. Finally, the performances of the three bootstrap procedures are explored by a simulation study and compared with each other.  相似文献   

17.
This article proposes new bootstrap procedures for detecting multiple persistence shifts in a time series driven by non-stationary volatility. The assumed volatility process can accommodate discrete breaks, smooth transition variation as well as trending volatility. We develop wild bootstrap sup-Wald tests of the null hypothesis that the process is either stationary [I(0)] or has a unit root [I(1)] throughout the sample. We also propose a sequential procedure to estimate the number of persistence breaks based on ordering the regime-specific bootstrap p-values. The asymptotic validity of the advocated procedures is established both under the null of stability and a variety of persistence change alternatives. A comparison with existing tests that assume homoskedasticity illustrates the finite sample improvements offered by our methods. An application to OECD inflation rates highlights the empirical relevance of the proposed approach and weakens the case for persistence change relative to existing procedures.  相似文献   

18.
This article derives a semi‐parametric estimator of multi‐variate fractionally integrated processes covering both stationary and non‐stationary values of d. We utilize the notion of the extended discrete Fourier transform and periodogram to extend the multi‐variate local Whittle estimator of Shimotsu (2007) to cover non‐stationary values of d. Consistency and asymptotic normality is shown for d ∈ (?1/2,∞). A simulation study illustrates the performance of the proposed estimator for relevant sample sizes. Empirical justification of the proposed estimator is shown through an empirical analysis of log spot exchange rates. We find that the log spot exchange rates of Germany, United Kingdom, Japan, Canada, France, Italy and Switzerland against the US Dollar for the period January 1974 until December 2001 are well decribed as I(1) processes.  相似文献   

19.
This study deals with the parameter estimation in long-memory time series models. An unbiased and consistent estimator is proposed. The proposed estimator is based on a least-squares method in the frequency domain, and it is computationally simple. Also, the Cramer–Rao lower bound is derived. The mean-square error of the proposed estimator is order of O(1/N), where N is the number of samples. The accuracy of the estimates is verified using synthetic long-memory time series data.  相似文献   

20.
This paper studies the bootstrap procedures for time series regressions with integrated processes. Both estimation and hypothesis testing are studied. It is shown that the suggested bootstrap approximations to the distribution of the least squares estimator and the regression test statistic are asymptotically valid. A Monte Carlo experiment is conducted to evaluate the finite sample performance of these bootstrap procedures. The simulation results indicate that the bootstrap method provides reasonably good approximation to the distribution of the least squares estimator, and gives proper size and satisfactory power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号