首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
黄海  王伟 《复合材料学报》2012,29(5):196-202
为了提高复合材料叶片承担载荷的能力, 尤其是承受最大弯矩的叶片根部的承载能力, 研究了遗传算法的优化原理并将遗传算法应用到复合材料叶片根部铺层的优化设计中。针对复合材料层压结构遗传算法优化设计中, 层压结构参数具有离散型的特点, 提出了适合复合材料层压结构遗传算法优化设计的整数编码策略, 以整数来表征层压结构参数。在分析层压结构强度的基础上, 针对结构强度优化的目标构造了可用于遗传算法的适应度函数。同时参考了一定的铺层规则, 在铺层角度限制为工程中常用的四种角度的前提下, 应用遗传算法对叶片根部进行了铺层优化设计。结果表明, 由于遗传算法特有的处理离散型问题的优势, 在叶片根部的铺层优化设计中应用遗传算法是可行和可信的。  相似文献   

2.
采用参数化建模,建立多种复合材料叶片三维有限元壳体模型,并对叶片进行模态分析。进一步采用流固耦合方法,实现叶片表面气动载荷加载,对额定工况下的叶片进行屈曲分析。以初步设计的5MW风力机叶片为例,研究结果表明:复合材料具有明显的各向异性;铺层纤维角度影响叶片整体固有频率,合理的铺层结构可使叶片低阶固有频率远离激振频率,防止叶片发生共振破坏;复合材料铺层叶片在额定工况下不会发生整体屈曲破坏,但因复合材料抗拉抗压性能不同,在压缩载荷作用下叶片背风面几何突变区出现局部屈曲,在叶片设计制造时应该充分加以考虑,以防止局部屈曲破坏。  相似文献   

3.
铺层拼接层合板的抗拉强度   总被引:3,自引:0,他引:3  
针对复合材料结构设计中遇到含铺层拼接的层合板强度预测问题,本文设计了含铺层交错拼接区的碳/双马复合材料层合板试件,采用拉伸试验方法测定了该材料的力学性能,得到了不同拼接长度层合板的抗拉强度。试验结果表明,铺层拼接状态差异对复合材料层合板的承载能力有显著影响,文中根据试验结果建立了抗拉强度随拼接长度变化的经验公式,为复合材料层合板结构的铺层设计和强度分析提供了理论依据。  相似文献   

4.
建立了复合材料层合加筋壁板的屈曲后屈曲有限元分析模型。该模型采用界面单元以有效模拟筋条和壁板之间的连接界面, 连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据, 引入材料刚度退化模型, 采用非线性有限元方法, 研究了复合材料加筋壁板在压缩载荷下的前后屈曲平衡路径及破坏过程。数值分析结果与实验结果吻合良好, 证明了该方法的合理有效性。详细探讨了筋条尺寸及界面单元强度等参数对加筋壁板屈曲后屈曲行为及承载能力的影响规律, 研究表明增加筋条截面惯性矩及筋条密度在一定程度上能有效提高加筋板的屈曲载荷与极限强度, 筋条密度增加到一定程度会引起结构破坏形式由失稳破坏?湮顾跗苹? 界面强度与铺层方式对极限强度有重要影响, 界面脱粘是引起加筋板最终破坏的重要因素。   相似文献   

5.
对于尺寸较大或形状复杂的结构,通常需要在纤维增强树脂(FRP)复合材料内部对铺层进行拼接处理。铺层拼接会在材料内部引起复杂的应力分布,具有突出的安全隐患。以同一位置处出现不同层数铺层拼接的单向碳纤维增强树脂(CFRP)复合材料为研究对象,重点分析了铺层拼接对材料拉伸力学性能的影响机制。通过拉伸实验,测试了拼接对其力学强度的影响;用相机记录了破坏过程,并结合数字图像相关技术(DIC)对拼接位置附近的应变场进行了监测。利用有限元模型(FEM)模拟和分析结构的破坏机制,采用3D-Hashin准则和渐进损伤模型对CFRP复合材料铺层进行模拟;采用内聚力模型对胶层失效行为进行描述。实验结果表明,拼接结构的引入大幅降低了材料的抗拉强度。FEM模拟与实验测试结果吻合度高,说明了模型的有效性。综合实验结果和模拟分析得到,铺层拼接处产生应力集中,造成被拼接的两部分分离并伴随拼接铺层和连续铺层的层间剪切破坏;层间破坏发生后,拉伸载荷完全由连续铺层承载。因此,材料的最终承载能力由材料中连续铺层数决定。   相似文献   

6.
以复合材料层合板各单层连续变化的铺层角度为设计变量, 在有限元软件中对层合板结构的基频进行优化分析, 在四边简支和固支两种不同的边界条件下, 结构的基频分别提高了4.9%和16.2%, 并对优化前后结构的静力失效强度进行了对比分析。随后将这种优化方法应用到某无人机复合材料机翼格栅结构中, 针对格栅结构蒙皮和肋板共计24个纤维铺层角度进行了优化设计, 使结构基频提高了10.6%, 同时结构的承载能力也有了一定程度的提高。  相似文献   

7.
对两种不同铺层参数的复合材料加筋壁板结构进行了冲击损伤预制及剪切承载能力试验。讨论了冲击强度、铺层参数对加筋壁板剪切承载能力的影响。结果表明,随着冲击强度的增大,加筋壁板剪切承载能力逐渐减小,不同铺层参数的试样T2和P1在相同能量的冲击下,损伤面积虽然大致相同,试件P1比T2的破坏载荷高出19.1%。  相似文献   

8.
在研究层合板在复杂载荷下的极限强度时,提出了基于层合板基本强度和最佳应力比实验强度所确定的层合板张量型强度准则和层合板联合强度理论.通过建立新的层合板铺层刚度退化理论并用实验测定“均衡型刚度退化系数”,实现了LPF包络线预测;进而提出了层合板退化张量型强度准则.该准则是一种由单向板基本刚度、强度性能,辅助以均衡型刚度退化系数,预测各种铺层序列的层合板在复杂载荷下最大承载能力的强度判据和工程方法.上述强度准则与[±θ]s,层合板的单向拉伸,[±45]s、[0/90]s层合板平板拉剪,以及[0/90]s、[0/±45]s和[0/45]s层合管状件的双向载荷强度实验结果相当吻合.所提出的层合板极限强度判据和最大承载能力的估算方法,对玻纤复合材料层合结构的工程强度设计,具有实际的指导意义和实用价值.  相似文献   

9.
目的 为掌握碳纤维复合材料板在低速冲击载荷作用下的损伤规律,延缓失效破坏,对其冲击损伤的应力状态进行研究。方法 基于ABAQUS平台,建立碳纤维复合材料层合板低速冲击有限元模型,采用Hashin失效准则和VUMAT用户子程序,对碳纤维复合材料层合板的冲击过程进行数值模拟,同时考虑层合板层内与层间失效,以此来研究低速冲击条件下复合材料的损伤机理,分析冲击损伤过程中的应力变化趋势,讨论应力的分布状态。重点研究铺层角度及铺层距离冲头远近对应力的影响。结果 不同角度铺层的应力传播轨迹均沿着纤维方向和垂直于纤维方向同时扩展,应力均先增加至极限值而后迅速下降;铺层角度越大,板料的承载能力越弱,0°铺层的极限应力为1 432 MPa,而90°铺层的极限应力降至1 206 MPa;离冲头越远的铺层应力越小,达到峰值的时间更早且率先下降,说明远离冲头的铺层更早发生失效。结论 揭示了碳纤维层合板在低速冲击载荷作用下的应力状态及其对损伤的影响规律,能够为复合材料层合板零件设计提供参考。  相似文献   

10.
董平  孙文磊  樊军  苏亚坤 《复合材料学报》2018,35(11):3088-3096
风机GFRP复合材料叶片摆振运动时产生的层间滑动裂纹是叶片破坏的主要诱因之一,应力强度因子K是层间断裂韧性的重要参量,也是表面裂缝安全性评估的重要指标之一。本文在试验基础上提出了由GFRP复合材料叶片表面位移推导K值的新方法,通过试验验证其理论正确性,试验与仿真对比证明了通过叶片摆振运动表面位移来研究层间断裂韧性响应的方法是可行的,为GFRP复合材料风机叶片的强度预测提供了新的思路和方法。  相似文献   

11.
The wind turbine blade sustains various kinds of loadings during the operation and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. Most of the composite blades are made of glass fibers composites while carbon fibers are also employed in recent years. Composite materials have the advantages of high specific strength and stress. This study develops a GUI interface to construct the blade model for the stress analysis using ANSYS. With the aid of visualization interface, the geometric model of the blade can be constructed by only a few data inputs. Based on the numerical stress analysis of the turbine blade, a simple iterative method was proposed to design the structure of the composite blade.  相似文献   

12.
To reach an optimal design solution for the composite layup of large-scale wind turbine blades, subjected to various design load conditions, while, fulfilling numerous design requirements, is a challenging task to accomplish. Since, a large-scale blade is a slender beam structure, therefore, its thin composite layup can be assumed to be under plane stress condition. Consequently, a parametric study of the skin laminates used in the blade composite layup, is conducted to explore and identify the possible design improvements. The results show that the use of off-axis fiber angles of the skin laminate lower than the conventional 45° are more favorable to achieve higher laminate stiffness, strength, bucking stability, fatigue resistance, and bend-twist coupling value, thereby, demonstrating the potential improvements to the existing composite layup design of large-scale wind turbine blade.  相似文献   

13.
Some interesting studies are made in this paper on the life management of a composite wind turbine blade. It presents the details of finite element modeling and validation, blade response under service loading conditions, power coefficient evaluation for the optimum design parameters of the blade configuration, development of failure envelope and fatigue life estimations. Finite element analysis results are found to be in good agreement with existing test results on a typical composite blade configuration. The failure envelope generated from the present modified failure criterion correlates well with the test results on different composite materials. The procedure adopted in this paper can be utilized for optimum design of large size composite wind turbine blades.  相似文献   

14.
The overall objective is a top-down approach to structural instability phenomena in wind turbine blades, which is used to identify the physics governing the ultimate strength of a generic wind turbine blade under a flap-wise static test. The work is concerned with the actual testing and the adoption of a phenomenological approach, and a discussion is conducted to assess and evaluate the wind turbine blade response during loading and after collapse by correlating experimental findings with numerical model predictions. The ultimate strength of the blade studied is governed by instability phenomena in the form of delamination and buckling. Interaction between both instability phenomena occurs causing a progressive collapse of the blade structure.  相似文献   

15.
The objective of this paper is to present a geometrical nonlinear and interlaminar progressive failure finite element analysis of a generic wind turbine blade undergoing a static flap-wise load and comparisons with experimental findings. It is found that the predictive numerical models show excellent correlation with the experimental findings and observations in the pre-instability response. Consequently, the ultimate strength of the wind turbine blade studied is governed by a delamination and buckling coupled phenomenon, which results in a chain of events and sudden structural collapse with compressive fibre failure in the delaminated flange material. Finally, a parametric study of the critical load factors with respect to various delamination sizes and positions inside the compressive flange of the wind turbine blade is presented.  相似文献   

16.
根据树脂传递模塑(RTM)成型的缎纹机织复合材料T型接头的结构特征和纤维布局特点, 基于ANSYS有限元数值分析平台, 建立符合其真实结构的几何模型和有限元分析模型。基于渐进失效强度预测方法的基本思想, 使用有限元计算软件ANSYS的参数化设计语言(APDL)开发相应的程序, 实现改进形式的Hashin失效准则。采用合适的最终失效评价方法, 建立二维机织结构复合材料T型接头受弯曲载荷时的渐进失效预测方法, 能够有效地模拟从初始加载到最终失效过程中机织复合材料T型接头结构的力学响应及损伤的萌生与发展, 并预测结构的静强度。   相似文献   

17.
针对风力发电叶片在多风沙环境下的固体粒子冲蚀磨损行为, 研究了风力发电叶片专用环氧树脂(EPIKOTETM RIM 135、EPIKURETM RIM H 137)、传统玻纤增强环氧复合材料和新型碳纳米纤维纸-玻纤/环氧复合材料的固体粒子冲蚀磨损行为, 并测试了不同材料的玻璃化转变温度, 进而对比分析了其对冲蚀磨损的影响; 针对风力发电叶片在寒冷环境下表面容易结冰的现象, 研究了上述三种材料表面的疏水性能, 并测试了它们对水的接触角大小。结果表明: 碳纳米纤维纸-玻纤/环氧复合材料具有良好的界面结合, 且碳纳米纤维纸的引入提高了碳纳米纤维纸-玻纤/环氧复合材料的玻璃化转变温度(从55 ℃提高到63 ℃), 从而改善了其耐固体粒子冲蚀磨损性能; 同时, 碳纳米纤维纸的加入改善了碳纳米纤维纸-玻纤/环氧复合材料的表面疏水性能(接触角从104°提高到131°)。  相似文献   

18.
This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck’s fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade’s radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.  相似文献   

19.
In recent years, there has been a growing interest in the use of naturally sourced fibres for use in composites design and manufacture. In this work, a structural design on 1-kW-class horizontal axis wind turbine blade using natural flax fibre composite is performed. The structural design results of flax/epoxy composite blade are compared with the design results of glass/epoxy composite blade. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Through the structural analyses, it is confirmed that the designed blade using natural composite is acceptable for structural safety, blade tip deflection, structural stability, resonance possibility and weight.  相似文献   

20.
Local buckling is a typical failure mode of large scale composite wind turbine blades. A procedure for predicting the onset and location of local buckling of composite wind turbine blades under aerodynamic loads is proposed in this paper. This procedure is distinct from its counterparts in adopting the pressure distributions obtained from Computational Fluid Dynamics (CFD) calculations as the loads. The finite element method is employed to investigate local buckling resistance of the composite blade. To address the mismatch between the unstructured CFD grids of the blade surface and the finite shell elements used during the buckling analysis, an interpolation code is developed, allowing mapping the pressure computed by using CFD to the finite element model. With the well documented National Renewable Energy Laboratory phase VI wind turbine blade, the procedure is demonstrated to be capable of yielding satisfactory results. Comparison with results obtained by using the blade surface pressure distributions calculated using a simple method is also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号