首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Five field experiments and one greenhouse experiment were carried out to assess the effects of nitrogen (N) fertilizer type and the amount of applied N fertilizer on nitrous oxide (N2O) emission from grassland. During cold and dry conditions in early spring, emission of N2O from both ammonium (NH 4 + ) and nitrate (NO 3 ) containing fertilizers applied to a clay soil were relatively small, i.e. less than 0.1% of the N applied. Emission of N2O and total denitrification losses from NO 3 containing fertilizers were large after application to a poorly drained sand soil during a wet spring. A total of 5–12% and 8–14% of the applied N was lost as N2O and via denitrification, respectively. Emissions of N2O and total denitrification losses from NH 4 + fertilizers and cattle slurry were less than 2% of the N applied. Addition of the nitrification inhibitor dicyandiamide (DCD) reduced N2O fluxes from ammonium sulphate (AS). However, the effect of DCD to reduce total N2O emission from AS was much smaller than the effect of using NH 4 + fertilizer instead of NO 3 fertilizer, during wet conditions. The greenhouse study showed that a high groundwater level favors production of N2O from NO 3 fertilizers but not from NH 4 + fertilizers. Inereasing calcium ammonium nitrate (CAN) application increased the emitted N2O on grassland from 0.6% of the fertilizer application rate for a dressing of 50 kg N ha–1 to 3.1% for a dressing of 300 kg N ha–1. In another experiment, N2O emission increased proportionally with increasing N rate. The results indicate that there is scope for reducing N2O emission from grasslands by choosing the N fertilizer type depending on the soil moisture status. Avoiding excessive N application rates may also minimize N2O emission from intensively managed grasslands.  相似文献   

2.
Annual cycles of NO, NO2 and N2O emission rates from soil were determined with high temporal resolution at a spruce (control and limed plot) and beech forest site (Höglwald) in Southern Germany (Bavaria) by use of fully automated measuring systems. The fully automated measuring system used for the determination of NO and NO2 flux rates is described in detail. In addition, NO, NO2 and N2O emission rates from soils of different pine forest ecosystems of Northeastern Germany (Brandenburg) were determined during 2 measuring campaigns in 1995. Mean monthly NO and N2O emission rates (July 1994–June 1995) of the untreated spruce plot at the Höglwald site were in the range of 20–130 µg NO-N m-2 h-1 and 3.5–16.4 µg N2O-N m-2 h-1, respectively. Generally, NO emission exceeded N2O emission. Liming of a spruce plot resulted in a reduction of NO emission rates (monthly means: 15–140 µg NO-N m-2 h-1) by 25-30% as compared to the control spruce plot. On the other hand, liming of a spruce plot significantly enhanced over the entire observation period N2O emission rates (monthly means: 6.2–22.1 µg N2O-N m-2 h-1). Contrary to the spruce stand, mean monthly N2O emission rates from soil of the beech plot (range: 7.9–102 µg N2O-N m-2 h-1) were generally significantly higher than NO emission rates (range: 6.1–47.0 µg NO-N m-2 h-1). Results obtained from measuring campaigns in three different pine forest ecosystems revealed mean N2O emission rates between 6.0 and 53.0 µg N2O-N m-2 h-1 and mean NO emission rates between 2.6 and 31.1 µg NO-N m-2 h-1. The NO and N2O flux rates reported here for the different measuring sites are high compared to other reported fluxes from temperate forests. Ratios of NO/N2O emission rates were >> 1 for the spruce control and limed plot of the Höglwald site and << 1 for the beech plot. The pine forest ecosystems showed ratios of NO/N2O emission rates of 0.9 ± 0.4. These results indicate a strong differentiating impact of tree species on the ratio of NO to N2O emitted from soil.  相似文献   

3.
The effect of liming an acidic mineral soil (Dystric Nitosol from southern China), used for arable agriculture, on N2O emission was studied in an incubation experiment. After the soil pH had been raised from pH 4.4 to 5.2, 6.7 and 8.1, soil samples were either amended with NH4 + and incubated aerobically, favoring nitrification or, after application of NO3 , the incubation took place under anaerobic conditions, favoring denitrification. Gas sampling for N2O determination and soil analyses were performed at regular intervals up to 13 days. Under nitrification conditions only small N2O emission rates were observed (max. 6 g N kg–1 d–1) with significant differences between high and low pH values during the first 2 days of incubation. The nitrifying activity was low, even with high pH, and this, together with good aeration conditions, could partly explain the small N2O evolution. During denitrification, however, cumulative N2O emissions reached much higher values (1600 g N kg–1 in comparison to 40 g N kg–1 under nitrification conditions). N2O emission during denitrification was significantly enhanced by increasing soil pH. Under alkaline conditions (pH 8.1) a large nitrite accumulation occurred, which was in line with the highest nitrate reductase activity determined in this treatment. The limited availability of organic carbon is probably the main reason for the absence of further reduction of NO2 to N2O or N2. At pH 6.7 the total N2O emission was slightly higher than at pH 8.1, although the start of pronounced emissions was retarded and only small amounts of NO2 accumulated. Acid soil conditions caused either negligible (pH 4.4) or only small (pH 5.2) N2O emissions. It can be concluded that these kinds of soil, used alternatively for production of upland crops or paddy rice, are prone to high N2O emissions after flooding, particularly under neutral to alkaline conditions. In order to avoid major N2O evolution and accumulation of nitrite, which can be leached into groundwater, the pH should not be raised to values above 5.5–6.  相似文献   

4.
The contribution of ploughing permanent grassland and leys to emissions of N2O and CO2 is not yet well known. In this paper, the contribution of ploughing permanent grassland and leys, including grassland renovation, to CO2 and N2O emissions and mitigation options are explored. Land use changes in the Netherlands during 1970–2020 are used as a case study. Three grassland management operations are defined: (i) conversion of permanent grassland to arable land and leys; (ii) rotations of leys with arable crops or bulbs; and (iii) grassland renovation. The Introductory Carbon Balance Model (ICBM) is modified to calculate C and N accumulation and release. Model calibration is based on ICBM parameters, soil organic N data and C to N ratios. IPCC emission factors are used to estimate N2O-emissions. The model is validated with data from the Rothamsted Park Grass experiments. Conversion of permanent grassland to arable land, a ley arable rotation of 3 years ley and 3 years arable crops, and a ley bulb rotation of 6 years ley and one year bulbs, result in calculated N2O and CO2 emissions totalling 250, 150 and 30 ton CO2-equivalents ha–1, respectively. Most of this comes from CO2. Emissions are very high directly after ploughing and decrease slowly over a period of more than 50 years. N2O emissions in 3/3 ley arable rotation and 6/1 ley bulb rotation are 2.1 and 11.0 ton CO2-equivalents ha–1 year–1, respectively. From each grassland renovation, N2O emissions amount to 1.8 to 5.5 ton CO2-equivalents ha–1. The calculated total annual emissions caused by ploughing in the Netherlands range from 0.5 to 0.65 Mton CO2-equivalents year–1. Grassland renovation in spring offers realistic opportunities to lower the N2O emissions. Developing appropriate combinations of ley, arable crops and bulbs, will reduce the need for conversion of permanent pasture. It will also decrease the rotational losses, due to a decreased proportion of leys in rotations. Also spatial policies are effective in reducing emissions of CO2 and N2O. Grassland ploughing contributes significantly to N2O and CO2 emissions. The conclusion can be drawn that total N2O emissions are underestimated, because emissions from grassland ploughing are not taken into account. Specific emission factors and the development of mitigation options are required to account for the emissions and to realise a reduction of emissions due to the changes in grassland ploughing.  相似文献   

5.
We studied nitrous oxide (N2O) emissions every growing season (April to October) for 6 years (19952000), in a Gray Lowland soil cultivated with onions in central Hokkaido, Japan. Emission of N2O from the onion field ranged from 0.00 to 1.86 mgN m–2 h–1. The seasonal pattern of N2O emission was the same for 6 years. The largest N2O emissions appeared near harvesting in August to October, and not, as might be expected, just after fertilization in May. The seasonal patterns of soil nitrate (NO3 ) and, ammonium (NH4 +) levels and the ratio of N2O to NO emission indicated that the main process of N2O production after fertilization was nitrification, and the main process of N2O production around harvest time was denitrification. N2O emission was strongly influenced by the drying–wetting process of the soil, as well as by the high soil water content. The annual N2O emission during the growing season ranged from 3.5 to 15.6 kgN ha–1. The annual nitrogen loss by N2O emission as a percentage of fertilizer-N ranged from 1.1 to 6.4%. About 70% of the annual N2O emission occurred near harvesting in August to October, and less than 20% occurred just after fertilization in May to July. High N2O fluxes around the harvesting stage and a high proportion of N2O emission to total fertilizer-N appeared to be probably a characteristic of the study area located in central Hokkaido, Japan.  相似文献   

6.
Nitrous oxide (N2O) emission from fertilized maize fields was measured using a closed chamber at four experimental sites in Thailand. The average measured N2O flux from unfertilized plots through crop season was 4.16 ± 1.52, 5.05 ± 1.65, 5.25 ± 1.68 and 6.74 ± 2.95 g N2O-N m-2 h-1, at Nakhon Sawan, Phra Phutthabat, Khon Kaen and Chiang Mai, respectively. Increased N2O emissions by the application of nitrogen fertilizer were 0.22–0.44, 0.19–0.38%, 0.12–0.24 and 0.08–0.15% of the applied N, respectively. Compared to other data, N2O emission rate to applied nitrogen was not significantly different between the data of Thailand and the Temperate Zone.  相似文献   

7.
Rice-flooding fallow, rice-wheat, and double rice-wheat systems were adopted in pot experiment in an annual rotation to investigate the effects of cropping system on N2O emission from rice-based cropping systems. The annual N2O emission from the rice-wheat and the double rice-wheat cropping systems were 4.3 kg N ha–1 and 3.9 kg N ha–1, respectively, higher than that from rice-flooding fallow cropping system, 1.4 kg N ha–1. The average N2O flux was 115 and 118 g N m–2 h–1 for rice season in rice-wheat system and early rice season in double rice-wheat system, respectively, 68.6 and 35.3 g N m–2 h–1 for the late rice season in double rice-wheat system and rice season in rice-flooding fallow, respectively, and only 3.1–5.3 g N m–2 h–1 for winter wheat or flooding fallow season. Temporal variations of N2O emission during rice growing seasons differed and high N2O emission occurred when soil conditions changed from upland crop to flooded rice.  相似文献   

8.
A field experiment was conducted to investigate the effects of winter management and N fertilization on N2O emission from a double rice-based cropping system. A rice field was either cropped with milk vetch (plot V) or left fallow (plot F) during the winter between rice crops. The milk vetch was incorporated in situ when the plot was prepared for rice transplanting. Then the plots V and F were divided into two sub-plots, which were then fertilized with 276 kg urea-N ha–1 (referred to as plot VN and plot FN) or not fertilized (referred to as plot VU and plot FU). N2O emission was measured periodically during the winter season and double rice growing seasons. The average N2O flux was 11.0 and 18.1 g N m–2 h–1 for plot V and plot F, respectively, during winter season. During the early rice growing period, N2O emission from plot VN averaged 167 g N m–2 h–1, which was eight- to fifteen-fold higher than that from the other three treatments (17.8, 21.0 and 10.8 g N m–2 h–1 for plots VU, FN, and FU, respectively). During the late rice growing period, the mean N2O flux was 14.5, 11.1, 12.1 and 9.9 g N m–2 h–1 for plots VN, VU, FN and FU, respectively. The annual N2O emission rates from green manure-double rice and fallow-double rice cropping systems were 3.6 kg N ha–1 and 1.3 kg N ha–1, respectively, with synthetic N fertilizer, and were 0.99 kg N ha–1 and 1.12 kg N ha–1, respectively, without synthetic N fertilizer. Generally, both green manure N and synthetic fertilizer N contribute to N2O emission during double rice season.  相似文献   

9.
Urine deposition on grassland causes significant N2O losses, which in some cases may result from increased denitrification stimulated by labile compounds released from scorched plant roots. Two 12-day experiments were conducted in 13C- labelled grassland monoliths to investigate the link between N2O production and carbon mineralization following application of low rates of urine-N. Measurements of N2O and CO2 emissions from the monoliths as well as C signal of evolved CO2 were done on day −4, −1, 0, 1, 2, 4, 5, 6 and 7 after application of urine corresponding to 3.1 and 5.5 g N m−2 in the first and second experiment, respectively. The C signal was also determined for soil organic matter, dissolved organic C and CO2 evolved by microbial respiration. In addition, denitrifying enzyme activity (DEA) and nitrifying enzyme activity (NEA) were measured on day −1, 2 and 7 after the first urine application event. Urine did not affect DEA, whereas NEA was enhanced 2 days after urine application. In the first experiment, urine had no significant effect on the N2O flux, which was generally low (−8 to g N2O-N m−2 h−1). After the second application event, the N2O emission increased significantly to g N2O-N m−2 h−1 and the N2O emission factor for the added urine-N was 0.18%. However, the associated 13C signal of soil respiration was unaffected by urine. Consequently, the increased N2O emission from the simulated low N-urine patches was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots.  相似文献   

10.
N2O, NO and NO2 fluxes from an Andosol soil in Japan after fertilization were measured 6 times per day for 10 months from June 1997 to April 1998 with a fully automated flux monitoring system in lysimeters. Three nitrogen chemical fertilizers were applied to the soil–calcium nitrate (NI), controlled-release urea (CU), and controlled-release calcium nitrate (CN), and also no nitrogen fertilizer (NN). The total amount of nitrogen applied was 15 g N m–2 in the first and the second cultivation period of Chinese vegetable. In the first measuremnt period of 89 days, the total N2O emissions from NI, CN, CU, and NN were 18.4, 16.3, 48.7, and 9.60 mgN m–2, respectively. The total NO emissions from NI, CN, CU, and NN were 48.4, 33.7, 149, and 13.7 mgN m–2, respectively. In the second measurement period of 53 days, the total N2O emissions from NI, CN, and CU were 9.66, 7.23, and 20.6 mgN m–2, respectively. The total NO emissions from NI, CN, and CU were 24.7, 2.60 and 34.2 mgN m–2, respectively. The total N2O emission from CU was significantly higher than CN. In the third cultivation period, all plots were applied with 10 g N m–2 of ammonium phosphate (AP) and winter barley was cultivated. In the third measurement period of 155 days, the total N2O and NO emissions were 9.02 mgN m–2 and 10.2 mgN m–2, respectively. N2O and NO peaks were observed just after the fertilization for 30 days and 15 days, respectively. N2O, NO and NO2 fluxes for the year were estimated to be 38.6 81.5, 48.2 181, and –24.8 to –39.3 mgN m–2, respectively. NO2 was absorbed in all the plots, and a negative correlation was found between NO2 flux and the NO2 concentration just after the chamber closed. NO was absorbed in the winter period, and a negative correlation was found between NO flux and the NO concentration just after the chamber closed. A diurnal pattern was observed in N2O and NO fluxes in the summer, similar to air and soil temperature. We could find a negative relationship between flux ratio of NO-N to N2O-N and water-filled pore space (WFPS), and a positive relationship between NO-N and N2O-N fluxes and temperature. Q10 values were 3.1 for N2O and 8.7 for NO between 530 °C.  相似文献   

11.
Nitrous oxide (N2O) emissions were measured over two years from an intensively managed grassland site in the UK. Emissions from ammonium nitrate (AN) and urea (UR) were compared to those from urea modified by various inhibitors (a nitrification inhibitor, UR(N), a urease inhibitor, UR(U), and both inhibitors together, SU), as well as a controlled release urea (CR). N2O fluxes varied through time and between treatments. The differences between the treatments were not consistent throughout the year. After the spring and early summer fertilizer applications, fluxes from AN plots were greater than fluxes from UR plots, e.g. the cumulative fluxes for one month after N application in June 1999 were 5.2 ± 1.1 kg N2O-N ha–1 from the AN plots, compared to 1.4 ± 1.0 kg N2O-N ha–1 from the UR plots. However, after the late summer application, there was no difference between the two treatments, e.g. cumulative fluxes for the month following N application in August 2000 were 3.3 ± 0.7 kg N2O-N ha–1 from the AN plots and 2.9 ± 1.1 kg N2O-N ha–1 from the UR plots. After all N applications, fluxes from the UR(N) plots were much less than those from either the AN or the UR plots, e.g. 0.2 ± 0.1 kg N2O-N ha–1 in June 1999 and 1.1 ± 0.3 kg N2O-N ha–1 in August 2000. Combining the results of this experiment with earlier work showed that there was a greater N2O emission response to rainfall around the time of fertilizer application in the AN plots than in the UR plots. It was concluded that there is scope for reducing N2O emissions from N-fertilized grassland by applying UR instead of AN to wet soils in cool conditions, e.g. when grass growth begins in spring. Applying UR with a nitrification inhibitor could cut emissions further.  相似文献   

12.
N2O emission from cropland in China   总被引:1,自引:0,他引:1  
Based on the regionalization of uplands and paddy fields in China, the crop intensity in each region and the available field measurements, N2O emission from cropland in China in 1995 was estimated to be 398 Gg N, in which, 310 Gg N was from uplands, accounting for 78% of the total. 88 Gg N–N2O was emitted from paddy fields with 35 Gg N emitted during the rice growing season and 53 Gg N emitted during upland crop season. N2O emission from upland and from paddy field during upland land crop season accounted for 91% of the total emission.  相似文献   

13.
Nitrous oxide (N2O) is formed mainly during nitrification and denitrification. Inherent soil properties strongly influence the magnitude of N2O formation and vary with soil types. A laboratory study was carried out using eight humid tropic soils of Malaysia to monitor NH4 + and NO3 dynamics and N2O production. The soils were treated with NH4NO3 (100 mg N kg–1 soil) and incubated for 40 days at 60% water-filled pore space. The NH4 + accumulation was predominant in the acid soils studied and NO3 accumulation/disappearance was either small or stable. However, the Munchong soil depicted the highest peak (238 g N2O-N kg–1 soil d–1) at the beginning of the incubation, probably through a physical release. While the Tavy soil showed some NO3 accumulation at the end of the study with a maximum N2O flux of 206 g N2O-N kg–1 soil d–1, both belong to Oxisols. The other six soils, viz. Rengam, Selangor, Briah, Bungor, Serdang and Malacca series, formed smaller but maximum peaks in an decreasing order of 116 to 36 g N2O-N kg–1 soil d–1. Liming the Oxisols and Ultisols raised the soil pH, resulting in NO3 accumulation and N2O production to some extent. As such the highest N2O flux of 130.2 and 77.4 g N2O-N kg–1 soil d–1 was detected from the Bungor and Malacca soils, respectively. The Selangor soil, belonging to Inceptisol, did not respond to lime treatment. The respective total N2O formations were 3.63, 1.92 and 1.69 mg N2O-N kg–1 soil from the Bungor, Malacca and Selangor soils, showing an increase by 49 and 99% over the former two non-limed soils. Under non-limed conditions, the indigenous soil properties, viz. Ca++ content, %clay, %sand and pH of the soils collectively could have influenced the total N2O formation.  相似文献   

14.
Spatial patterns of CO2, CH4, and N2O flux were analyzed in the soil of a primary forest in Sumatra, Indonesia. The fluxes were measured at 3-m intervals on a sampling grid of 8 rows by 10 columns, with fluxes found to be below the minimum detection level at 12 points for CH4 and 29 points for N2O. All three gas fluxes distributed log-normally. The means and standard deviations of CO2 and CH4 fluxes calculated by the maximum likelihood method were 3.68 ± 1.32 g C m–2 d–1 and 0.79 ± 0.60 mg C m–2 d–1, respectively. The mean and standard deviation of N2O fluxes using a maximum likelihood estimator for the censored data set was 2.99 ± 3.26 g N m–2 h–1. The spatial dependency of CH4 fluxes was not detected in 3-m intervals, while weak spatial dependency was observed in CO2 and N2O fluxes. The coefficients of variation of CH4 and N2O were higher than that of CO2. Some hot spots where high levels of CH4 and N2O were generated in the studied field may increase the variability of these gases. The resulting patterns of variability suggest that sampling distances of >10 m and > 20 m are required to obtain statistically independent samples for CO2 and N2O flux in the studied field, respectively. But because of weak or no spatial dependency of each flux, a sampling distance of more than 10 m intervals is enough to prevent a significant problem of autocorrelation for each flux measurement.  相似文献   

15.
To better understand the effects of increased N input and dry periods on soil nitrous oxide (N2O) emission, we examined a unique data-set of weather, soil microclimate, N input, and N2O emissions (using the eddy covariance method), measured at a fertilized grassland over the period 2003–2008. We found that the N2O emission (11.5 kg N ha−1 year−1), the ratio of N2O emission to N input (3.4), and the duration of elevated N2O flux (57 days) in 2003 were about two times greater than those of the following years. 2003 had the highest annual N input (343 kg N ha−1 year−1) which exceeded the agronomical requirements for Irish grasslands (up to 306 kg ha−1 year−1). In the summer of 2003, the site had a significantly higher soil temperature, lower WFPS and lowest rainfall of all years. Large N2O emission events followed rainfall after a long dry period in the summer of 2003, attributed to dominant nitrification processes. Furthermore, in the non summer periods, when temperature was lower and WFPS was higher and when there were prior N applications, lower N2O emissions occurred and were attributed to dominant denitrification processes. Throughout the study period, the N input and soil dryness related factors (duration of WFPS under 50%, summer average WFPS, and low rainfall) showed exponential relationships with N2O emission and the ratio of N2O emission to N input. Based on these findings, we infer that the observed anomalously high N2O emission in 2003 may have been caused by the combined effects of excess N input above the plant uptake rate, elevated soil temperature, and N2O flux bursts that followed the rewetting of dry soil after an unusually long dry summer period. These results suggest that high N input above plant uptake rate and extended dry periods may cause abnormal increases in N2O emissions.  相似文献   

16.
Although it is known that crops can directly emit N2O, their contribution to the total N2O emission from crop-soil systems under field conditions is not well understood. This study was conducted to study the contribution of crops to total N2O emission from soybean-soil and maize-soil systems in northeastern China. The effects of N fertilization on N2O emission and NO 3 -N concentration in plants were also studied. The emission from crop-soil systems was measured with the closed chamber method, whereas the direct emission from crops was measured with the soil surface-sealed method. The addition of fertilizer N significantly increased the NO 3 -N concentration in crops and enhanced the N2O emission from crop-soil systems and from crops alone. The amount of N2O emitted directly from soybean plants accounted for 6 to 11% of the total soybean-soil emission. Similarly, the amount of N2O emitted directly from maize plants accounted for 8.5 to 16% of the total maize-soil emission. The proportion of the applied N lost through direct N2O emission from plants ranged from 0.19 to 0.34%, whereas the proportion of the applied N lost through N2O emission from the crop-soil system ranged from 1.1 to1.9%. These results suggest that the use of chambers that do not include plants may lead to an underestimation of the total N2O emission from crop-soil systems. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Potato fields and cut (ungrazed) grassland in SE Scotland gave greater annual N2O emissions per ha (1.0–3.2 kg N2O–N ha-1) than spring barley or winter wheat fields (0.3–0.8 kg N2O–N ha-1), but in terms of emission per unit of N applied the order was potatoes > barley > grass > wheat. On the arable land, especially the potato fields, a large part of the emissions occurred after harvest.When the grassland data were combined with those for 2 years' earlier work at the same site, the mean emission over 3 years, for fertilization with ammonium nitrate, was 2.24 kg N2O–N ha-1 (0.62% of the N applied). Also, a very strong relationship between N2O emission and soil nitrate content was found for the grassland, provided the water-filled pore space was > 70%. Significant relationships were also found between the emissions from potato fields and the soil mineral N content, with the added feature that the emission per unit of soil mineral N was an order of magnitude larger after harvest than before, possibly due to the effect of labile organic residues on denitrification.Generally the emissions measured were lower, as a function of the N applied, than those used as the basis for the current value adopted by IPCC, possibly because spring/early summer temperatures in SE Scotland are lower than those where the other data were obtained. The role of other factors contributing to emissions, e.g. winter freeze–thaw events and green manure inputs, are discussed, together with the possible implications of future increases in nitrogen fertilizer use in the tropics.  相似文献   

18.
Agricultural soils are a major source of the greenhouse gas nitrous oxide (N2O). Nitrous oxide emission models can be used to predict the effectiveness of N2O mitigation strategies; however, these models require rigorous testing before they can be used with confidence. Expert-N, a modular process based N2O emission model, was tested to determine its ability at predicting nitrogen (N) cycling in the soil–plant–atmosphere system under Canadian agroclimatic conditions. Ancillary data and N2O emissions were collected/measured from a corn cultivated clay-loam soil that was under different tillage and red clover treatments. The treatments were conventional till (CT) with and without red clover (rc) underseeded in the previous year's wheat crop (CT-Crc and CT-C, respectively), and no till (NT) with and without red clover underseeded in the previous year's wheat crop (NT-Crc and NT-C, respectively). Expert-N provided good estimates of N2O emissions, and predictions correlated well (positive) with the measured emissions (r 2 0.55–0.83). There was no statistically significant difference between measured and predicted daily emissions. The predicted emissions, integrated over the growing season (25 May–4 October, 1995), were 0.56, 0.57, 0.62, and 0.62 kg N2O-N ha–1 for CT-C, CT-Crc, NT-C, and NT-Crc, respectively. The measured emissions over the same period were 1.29, 1.07, 0.96, and 1.04 kg N2O-N ha–1 for CT-C, CT-Crc, NT-C, and NT-Crc, respectively. The modelled emissions underestimated the integrated measured emissions by 35–55%; however, the integrated measured emissions had an estimated uncertainty of ±35%. The model provided good predictions of the soil temperatures, moisture contents, and soil nitrate levels with no significant difference from the measured data. Correlations between modelled and measured values for these soil properties in the first 30 cm soil layer were positive and high with r 2 0.71–0.93.  相似文献   

19.
Monthly measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes in peat soils were carried out and compared with groundwater level over a year at four sites (drained forest, upland cassava,upland and lowland paddy fields) located in Jambi province, Indonesia. Fluxes from swamp forest soils were also measured once per year as the native state of this investigated area. Land-use change from drained forest to lowland paddy field significantly decreased the CO2 (from 266 to 30 mg C m–2 h–1) and N2O fluxes (from 25.4 to 3.8 g N m–2 h–1), but increased the CH4 flux (from 0.1 to 4.2 mg C m–2 h–1) in the soils. Change from drained forest to cassava field significantly increased N2O flux (from 25.4 to 62.2 g N m–2 h–1), but had no significant influence on CO2 (from 266 to 200 mg C m–2 h–1) and CH4 fluxes (from 0.1 to 0.3 mg C m–2 h–1) in the soils. Averaged CO2 fluxes in the swamp forests (94 mg C m–2 h–1) were estimated to be one-third of that in the drained forest. Groundwater levels of drained forest and upland crop fields had been lowered by drainage ditches while swamp forest and lowland paddy field were flooded, although groundwater levels were also affected by precipitation. Groundwater levels were negatively related to CO2 flux but positively related to CH4 flux at all investigation sites. The peak of the N2O flux was observed at –20 cm of groundwater level. Lowering the groundwater level by 10 cm from the soil surface resulted in a 50 increase in CO2 emission (from 109.1 to 162.4 mg C m–2 h–1) and a 25% decrease in CH4 emission (from 0.440 to 0.325 mg C m–2 h–1) in this study. These results suggest that lowering of groundwater level by the drainage ditches in the peat lands contributes to global warming and devastation of fields. Swamp forest was probably the best land-use management in peat lands to suppress the carbon loss and greenhouse gas emission. Lowland paddy field was a better agricultural system in the peat lands in terms of C sequestration and greenhouse gas emission. Carbon loss from lowland paddy field was one-eighth of that of the other upland crop systems, although the Global Warming Potential was almost the same level as that of the other upland crop systems because of CH4 emission through rice plants.  相似文献   

20.
Managed grasslands are occasionally ploughed up and reseeded in order to maintain or increase the sward productivity. It has been reported that this renovation of grassland is associated with a flush of soil organic nitrogen (N) mineralization and with a temporary increase in soil mineral N contents. Here, we report on the effects of method and time of grassland renovation on herbage yield, nitrate (NO3 ) leaching and nitrous oxide (N2O) emission. Field experiments were carried out at three sites (two sandy soils and a clay soil) in the Netherlands for three years. Renovation of grassland increased the percentage of Perennial ryegrass from 48–70% up to more than 90%. However, averaged over three years, dry matter yields were higher for the reference (not reseeded) swards (on average 13.6 Mg ha−1 for the highest N application rate) than for the renovated grasslands (12.2–13.1 Mg ha−1 dry matter). Grassland renovation in April did not increase N leaching in comparison to the reference. However, renovation in September increased the risk of leaching, because mineral N contents in the 0–90 cm were in November on average 46–77 kg N ha−1 higher than in the reference. Contents of dissolved organic N (DON) in the soil were not affected by renovation. Renovation increased N2O emissions by a factor of 1.8–3.0 relative to the reference grassland. Emissions of N2O were on average higher after renovation in April (8.2 kg N2O-N ha−1) than in September (5.8 kg N2O-N ha−1). Renovation without ploughing (i.e. only chemically destruction of the sward) resulted in a lower percentage of perennial ryegrass (60–84%) than with ploughing (>90%). Moreover, N2O emissions were higher after renovation without ploughing than with ploughing. Clearly, farmers need better recommendations and tools for determining when grassland renovation has beneficial agronomic effects. Losses of N via leaching and N2O emission after renovation can probably not be avoided, but renovation in spring in stead of autumn in combination with ploughing and proper timing of fertilizer application can minimize N losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号