首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The synthesis of the single-crystal Co3O4 nanorods by molten salt approach was reported for the first time. The products were characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Selected-area electron diffraction (SAED). TEM results indicate that these nanorods have diameters of about 150 nm and lengths of about 2 μm. According to the analysis of the SAED and HRTEM results, we drew the conclusion that these nanorods grew along an unusual [− 1,− 1,15] direction by Ostwald ripening mechanism.  相似文献   

2.
Synthesis of copper oxide (CuO) nanorods was achieved by thermal decomposition of the precursor of CuC2O4 obtained via chemical reaction between Cu(CH3COO)2·H2O and H2C2O4·2H2O in the presence of surfactant nonyl phenyl ether (9)/(5) (NP-9/5) and NaCl flux. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected-area electron diffraction (SAED) and high-resolution TEM (HRTEM) were used to characterize the structure features and chemical compositions of the as-made nanorods. The results showed that the as-prepared nanorods is composed of CuO with diameter of 30-100 nm, and lengths ranging from 1 to 3 μm. The mechanism of formation of CuO nanorods was also discussed.  相似文献   

3.
Novel Bi2S3 hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi2S3 film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.  相似文献   

4.
ZnWO4 nanorods are successfully synthesized by a template-free hydrothermal method, and are characterized in detail by X-ray diffractometer (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results show that the ZnWO4 nanorods with wolframite structure are well-crystallized single crystallites. The crystallinity of the products is influenced by the pH value of initial precursor suspension. The width and length of the synthesized samples increase with hydrothermal reaction temperature. The photocatalytic efficiency of the ZnWO4 nanorods for degradation of methylene blue (MB) in aqueous solution under UV light irradiation declines greatly with increasing crystallinity. The ZnWO4 nanorods prepared at pH of 4 have the best activity in photo-degradation of MB. After six recycles, photocatalytic activity loss of the catalyst is not obvious.  相似文献   

5.
GaOOH nanorods were synthesized by a green hydrothermal method at 200 °C using nanocrystalline Ga2O3 powders and distilled water as the starting materials, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and thermogravimetric and differential scanning calorimetry (TG-DSC) analysis.  相似文献   

6.
Single-phase RMn2O5 (R = Gd and Sm) nano- and microstructures have been successfully synthesized via a simple hydrothermal process at 250 °C for 24 h using NaOH as mineralizer. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selective area electron diffraction patterns (SAED) were used to characterize the as-synthesized GdMn2O5 and SmMn2O5 samples. The effect of NaOH concentration and the molar ratio of Mn2+/Mn7+ on the morphology and size of the final products was studied, and a possible formation mechanism of RMn2O5 (R = Gd and Sm) nanoplates and nanorods under hydrothermal conditions was proposed.  相似文献   

7.
Bundle-like structures consisting of single crystal cerium hydroxide carbonate (Ce(OH)CO3) nanorods have been synthesized successfully by a hydrothermal method at 100 °C using cerium nitrate (Ce(NO3)3·6H2O) as the cerium source, aqueous carbamide both as an alkaline and carbon source and cetyltrimethylammonium bromide (CTAB) as surfactant. X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to characterize such bundle-like structures. SEM and TEM images show that Ce(OH)CO3 bundle-like structures were composed of nanorods with diameters of ∼ 100 nm. The XRD pattern and electron diffraction (ED) pattern indicate that Ce(OH)CO3 has a pure orthorhombic single crystal structure.  相似文献   

8.
In2O3 octahedrons were synthesized by carbothermal reduction method. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis (SAED) and room-temperature photoluminescence (PL) spectra. The results show that the products are single-crystalline In2O3 octahedrons with the arrises length in the range of 400-3000 nm. The PL spectra displays blue and green emission peaks which can be indexed to default and oxygen vacancies; blue-shift and intensity decrease was observed when excitation wavelength decreases from 380 nm to 325 nm. The growth mechanism of the In2O3 octahedrons is discussed.  相似文献   

9.
Hollow sphere-like Fe3O4 (magnetite) with diameters of between 200-400 nm were synthesized in a reverse microemulsions. The particles were characterized by X-ray powder diffraction (XRD), selected area electron diffraction (SAED), transmission electron microscope (TEM) and field-emission scanning electron microscopy (FESEM). The possible formation mechanism of hollow sphere-like magnetite is discussed. Also, the magnetic properties of the samples were characterized on a vibrating sample magnetometer (VSM).  相似文献   

10.
SnO2纳米棒的制备及表征   总被引:13,自引:1,他引:12  
在聚氧乙烯五醚(NP5),聚氧乙烯九醚(NP9),乳化剂(OP)和环己烷组成的微乳体系中制备二氧化锡前驱物。然后再经800-820℃熔烧2.5h,成功地制备了直径为30-90nm,长5-10μm的金红石结构的二氧化锡纳米棒,并用透射电子显微镜,电子衍射,X射线衍射对二氧化锡纳米棒的结构进行了表征。用熔盐合成机理对其形成进行了讨论,初步认为是成核、长大过程形成了二氧化锡纳米棒。  相似文献   

11.
In this work, we demonstrated a new precursor route to synthesize CoFe2O4 one-dimensional (1D) nanorods. CoFe2O4 nanorods were prepared via the thermal decomposition of CoFe2(C2O4)3 nanorod precursor, which was prepared by solvothermal method without the assistance of template or surfactant. The microstructure and magnetic property of the obtained products were characterized by x-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermogravimetric (TG) and differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The results showed that the as-prepared CoFe2O4 nanorods were built by magnetic nanoparticles after calcining the precursor nanorods at different temperatures, and the size variation of magnetic nanoparticles with calcination temperatures leaded to variable magnetic properties.  相似文献   

12.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

13.
A novel tellurium/calcium silicate nanocomposite with tellurium nanorods homogeneously dispersed in the calcium silicate matrix has been successfully synthesized using corresponding tellurium nanorods, Ca(NO3)2·4H2O, and Na2SiO3·9H2O in ethanol/water mixed solvents at room temperature for 48 h. The new material consists of a single crystalline Te core and an amorphous calcium silicate shell. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDS). The method is simple and does not need any surfactant or template or base. Cytotoxicity experiments indicated that the tellurium/calcium silicate nanocomposites with a low concentration had good biocompatibility. This nanocomposite is a very promising candidate for the application as bioactive materials.  相似文献   

14.
Wen-hui Li 《Materials Letters》2008,62(25):4149-4151
Single crystalline Co3O4 nanorods have been successfully synthesized through thermal decomposition of the precursor, which was obtained by the microwave-assisted hydrothermal route. The obtained sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanorods. The optical property test indicates that the absorption peak of the nanorods shifts towards short wavelength. And the blue shift phenomenon might be ascribed to the quantum effect.  相似文献   

15.
Synthesis of nickel oxide (NiO) nanorods was achieved by thermal decomposition of the precursor of NiC2O4 obtained via chemical reaction between Ni(CH3COO)2·2H2O and H2C2O4·2H2O in the presence of surfactant nonyl phenyl ether (9)/(5) (NP-9/5) and NaCl flux. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure features and chemical compositions of the as-made nanorods. The results showed that the as-prepared nanorods is composed of NiO with diameter of 10–80 nm, and lengths ranging from 1 to 3 micrometers. The mechanism of formation of NiO nanorods is also discussed.  相似文献   

16.
《Materials Letters》2006,60(9-10):1229-1232
Radial-aligned GaN nanorods were synthesized by ammoniating Ga2O3 films on Mg layer deposited on Si(111) substrates. The products were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared spectra (FTIR) and high-resolution transmission electron microscopy (HRTEM). The SEM images indicated that the products consisted of radial-aligned GaN nanorods. The XRD and the selective area electron diffraction (SAED) patterns showed that nanorods were hexagonal GaN single crystals.  相似文献   

17.
Large-scale fan-shaped rutile TiO2 nanostructures have been synthesized by means of a simple hydrothermal method using only TiCl4 as titanium source and chloroform/water as solvents. The physicochemical features of the fan-shaped TiO2 nanostructures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), nitrogen absorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). Structural characterization indicates that the fan-shaped TiO2 nanostructures are composed of several TiO2 nanorods with diameters of about 5 nm and lengths of 300-350 nm. The average pore size and BET surface area of the fan-shaped TiO2 nanostructures are 6.2 nm and 59 m2/g, respectively. Optical adsorption investigation shows that the fan-shaped TiO2 nanostructures possess optical band gap energy of 3.11 eV.  相似文献   

18.
Hexagonal ZnO nanostructure flowers were successfully synthesized from a 1:15 molar ratio of Zn(CH3COO)22H2O to KOH using 180 W microwave radiation for 20 min. The product phase was detected using X-ray diffraction (XRD) and selected area electron diffraction (SAED). A diffraction pattern was also simulated and was found to be in accordance with those of the experiment and the JCPDS database. Raman spectrometry revealed the presence of four vibration peaks at 337.85, 381.13, 437.54 and 583.30 cm? 1. The product, spear-shaped nanorods in flower-like clusters, was characterized using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). High resolution TEM (HRTEM) showed that growth of the spear-shaped nanorods was in the [001] direction, which was normal to the (002) planes composing a lattice fringe of the nanorods. A formation mechanism of hexagonal ZnO nanostructure flowers was also proposed.  相似文献   

19.
Three-dimensional snowflake-like bismuth sulfide nanostructures were successfully synthesized by simple refluxing at 160 °C in ethylene glycol, using bismuth citrate and thiourea as reactants. The crystal structures and morphologies of the products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX). The Bi2S3 nanostructure was built up by highly ordered one-dimensional Bi2S3 nanorods, which was aligned in an orderly fashion. Ethylene glycol plays a critical role in the creation of bismuth sulfide three-dimensional nanostructures, which serves as an excellent solvent and structure director. Bismuth citrate, a linear polymer, also makes for the formation of the three-dimensional nanostructures.  相似文献   

20.
《Materials Research Bulletin》2006,41(10):1817-1824
Pure and uniform hexagonal-phase ZnS nanorods with quantum confinement effect were synthesized by solvothermal decomposition of an air-stable, easily obtained single-source molecular precursor (zinc diethyldithiocarbamate, Zn-(DDTC)2) in hydrazine hydrate aqueous solutions at 150–200 °C, and characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and UV–vis absorption spectra. The possible formation mechanism of one-dimensional ZnS nanostructure in the present system was also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号