首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An essentially arbitrary function V(θ, λ) defined on the surface of a sphere can be expressed in terms of spherical harmonics V(θ, Λ) = a n=1m=0npmn (cos θ) (gmn cos mΛ + hmn sin mΛ) where the Pnm are the seminormalized associated Legendre polynomials used in geomagnetism, normalized so that 〈[Pmn(cos θ) cos mΛ]〉2 =1/(2n+1) The angular brackets denote an average over the sphere. The class of functions V(θ, λ) under consideration is that normally of interest in physics and engineering. If we consider an ensemble of all possible orientations of our coordinate system relative to the sphere, then the coefficients gnm and hnm will be functions of the particular coordinate system orientation, but 〈:(gmn)2〉) = 〈(hmn)2 = Sn/(2n=1) where Sn =m=0n [(gmn)2 + (hmn)2] for any orientation of the coordinate system (Sn is invariant under rotation of the coordinate system). The averages are over all orientations of the system relative to the sphere. It is also shown that 〈gmnglp〉 = 〈hmnhlp〉 = 0 for lm or pn and 〈gmnhlp〉 = 0 fro all n, m, p, l.  相似文献   

2.
Slow changes in the magnetic field are believed to originate in the core of the Earth. Interpretation of these changes requires knowledge both of the vertical component of the field and of its rate of change at the core-mantle boundary (CMB). While various spherical harmonic models show some agreement for the field at the CMB, those for secular variation (SV) do not. SV models depend heavily on annual means at relatively few and poorly distributed magnetic observatories. In this paper, the SV at the CMB is modelled by fitting 15-year differences in the annual means of the X, Y and Z components (from 1959 to 1974). The model is made unique by imposing the constraint that ?CMBB?r2dS be a minimum, using the method of Shure et al. (1982). If SV is attributed to motions of core fluid, then this model will yield, in some sense, the slowest core motions. The null space is determined by the distribution of observations, and therefore, to be consistent, only those observatories have been retained which recorded almost continuously throughout the interval 1959–1974.The method allows misfit between the model and the observations. The best value for the misfit can be derived from estimates of errors in the data, or alternatively, because larger misfit leads to smoother models (i.e., smaller ? B?r2dS), the best value can be estimated subjectively from the final appearance of the model. Both procedures have their counterparts in the conventional spherical harmonic expansion approach, when smoothing is achieved by lowering the truncation level. The new proposal made in this paper is to use objective criteria for determining the misfit, based on the assumption that diffusion is negligible, in which event all integrals B?r2dS will vanish when Si is a region on the CMB bounded by a contour of zero vertical component of field. For the 1965 definitive model which is adopted here, and for most other contemporary models, there are six such areas, giving five independent integrals (the integrals over the six regions must sum to zero if ? · B = 0). Tabulating these integrals for various choices of the misfit gives minimum values near 2 nT y?1. It is impossible to achieve this good a fit to the data using a reasonable model derived by truncating the spherical harmonic expansion. The value 2 nT y?1 corresponds to errors of ~ 20 nT in individual annual means, which is rather larger than expected from the scatter in the data.  相似文献   

3.
The dependence of bulk sound speed Vφ upon mean atomic weight m and density ρ can be expressed in a single equation:
Vφ=Bρλ(m0m[12+λ(1?c)](km/sec)
Here B is an empirically determined “universal” parameter equal to 1.42, m0 = 20.2, a reference mean atomic weight for which well-determined elastic properties exist, and λ = 1.25 is a semi empirical parameter equal to γ ? 13 where γ is a Grüneisen parameter. The constant c = (? ln VM/? ln m)X, where VM is molar volume, is in general different for different crystal structure series and different cation substitutions. However, it is possible to use cFe = 0.14 for Fe2+Mg2+ and GeSi substitutions and cCa ? 1.3 for CaMg substitutional series. With these values it is pos to deduce from the above equation Birch's law, its modifications introduced by Simmons to account for Ca-bearing minerals, variations in the seismic equation of state observed by D.L. Anderson, and the apparent proportionality of bulk modulus K to VM?4.  相似文献   

4.
High-temperature and high-pressure recovery experiments were made on experimentally deformed olivines at temperatures of 1613–1788 K and pressures of 0.1 MPa to 2.0 GPa. In the high-pressure experiments, a piston cylinder apparatus was used with BN and NaCl powder as the pressure medium, and the hydrostatic condition of the pressure was checked by test runs with low dislocation density samples. No dislocation multiplication was observed. The kinetics of the dislocation annihilation process were examined by different initial dislocation density runs and shown to be of second order, i.e.
dρdt= ?p2K0exp[?(E1+PV1RT]
where ρ is the dislocation density, k0 is a constant, E1and V1 are the activation energy and volume respectively, and P, R and T are pressure, gas constant and temperature, respectively. Activation energy and volume were estimated from the temperature and pressure dependence of the dislocation annihilation rate as E1=389±59 kJ mol?1 and V1=14±2 cm3mol?1, respectively.The diffusion constants relevant to the dislocation annihilation process were estimated from a theoretical relation k=αD where k=k0 exp[?(E1 + PV1)/RT], D is the diffusion constant and α is a non-dimensional constant of ca. 300. The results agree well with the self-diffusion constant of oxygen in olivine. This suggests that the dislocation annihilation is rate-controlled by the (oxygen) diffusion-controlled dislocation climb.The mechanisms of creep in olivine and dry dunite are examined by using the experimental data of static recovery. It is suggested that the creep of dry dunite is rate-controlled by recovery at cell walls or at grain boundaries which is rate-controlled by oxygen diffusion. Creep activation volume is estimated to be 16±3 cm3 mol?1.  相似文献   

5.
The melting curve of perovskite MgSiO3 and the liquidus and solidus curves of the lower mantle were estimated from thermodynamic data and the results of experiments on phase changes and melting in silicates.The initial slope of the melting curve of perovskite MgSiO3 was obtained as dTm/dP?77 KGPa?1 at 23 GPa. The melting curve of perovskite was expressed by the Kraut-Kennedy equation as Tm(K)=917(1+29.6ΔVV0), where Tm?2900 K and P?23 GPa; and by the Simon equation, P(GPa)?23=21.2[(Tm(K)2900)1.75?1].The liquidus curve of the lower mantle was estimated as Tliq ? 0.9 Tm (perovskite) and this gives the liquidus temperature Tliq=7000 ±500 K at the mantle-core boundary. The solidus curve of the lower mantle was also estimated by extrapolating the solidus curve of dry peridotite using the slope of the solidus curve of magnesiowüstite at high pressures. The solidus temperature is ~ 5000 K at the base of the lower mantle. If the temperature distribution of the mantle was 1.5 times higher than that given by the present geotherm in the early stage of the Earth's history, partial melting would have proceeded into the deep interior of the lower mantle.Estimation of the density of melts in the MgOFeOSiO2 system for lower mantle conditions indicates that the initial melt formed by partial fusion of the lower mantle would be denser than the residual solid because of high concentration of iron into the melt. Thus, the melt generated in the lower mantle would tend to move downward toward the mantle-core boundary. This downward transportation of the melt in the lower mantle might have affected the chemistry of the lower mantle, such as in the D″ layer, and the distribution of the radioactive elements between mantle and core.  相似文献   

6.
An apparatus has been devised which allows precise creep and relaxation measurements to be made on minerals and rocks at temperatures up to 1600°C and at very low deviatoric stresses (1 < σ < 300 bar). This paper is concerned with measurements on mantle peridotite (lherzolite) from Balmuccia (Zone of Ivrea, Italy).The reaction of the sample to a step-like increase in stress is called its “creep function”. It is shown that the creep function contains all the necessary information to derive the spectra of the quality factor Q(ω) and of Young's modulus E(ω), within the seismic range of frequencies, provided the material behaves as a linear system. This has been proven up to a strain of 5 × 10?5.The Q?1-spectra at 1200 and 1300°C, obtained by Fourier inversion from the creep function, show no pronounced peak in the frequency band 0.01 < tf < 1 Hz and exhibit a general tendency to decrease slightly with frequency. The creep function: ?(t) = ?u · [1 + 3.7 · q · {(1 + 50t)0.27 ? }], where q is related to Q, satisfactorily describes the data at high temperatures and leads to Q?1(ω, T) = 3 × 103 · ω?0.27 · exp(?30RT)E(ω) is related to Q(ω) by the material dispersion equation. Above 1100°C the unrelaxed Young's modulus decreases rapidly with temperature according to an activation energy of about 20 kcal/mole. A lowering of short period S-wave velocity by 40% and P-wave velocity by 10% occurs below the solidus. Therefore, no partial melting is required in the asthenosphere.Steady-state creep at low axial stresses (20 < σ < 100 bar), obtained from the same rock, follows the relation ?? = 3 × 107 · δ1.4 · exp(?125RT) indicative of grain boundary diffusion or superplasticity. At higher stresses a power law ?? = 45 · δ4 · exp(?125RT) typical of dislocation creep, is found.The frequency dependence of Q and the ratio of the activation energies of Q and are indicative of so called “high-temperature background absorption”, as the dominant mechanism, and of a diffusion-controlled dislocation mobility common to both absorption and creep. From a, b, and c, relations between the effective viscosity ηf and Q of the form: logηe?? = 1α · logQ ? (n ? 1) · log ω + log D are derived, where α ~ 0.25, n is the power of σ, and D is a constant.  相似文献   

7.
Interdiffusion experiments were performed between Fe3O4 (single crystal) and Fe2.8Ti0.2O4 (powder), under self-buffering conditions (temperature range 600–1034°C), and for various oxygen potentials at 1400°C. Profiles of Fe and Ti were obtained by electronprobe microanalysis, and the interdiffusion coefficient D was calculated by the Boltzmann-Matano method. Low-temperature data at 3 mole% Ti could be described by D = (3.85?1.11+1.68) × 10?3exp(2.23 ± 0.04 eV/kT) cm2/s. An estimate is given for the time to interdiffuse 2μm at various temperatures, and the results compared with recent experiments.  相似文献   

8.
By use of the modern theory of liquids and some guidance from the hard-sphere model of liquid structure, the following new results have been derived for application to the Earth's outer core. (1) dK/dP ? 5 ? 5. 6P/K, where K is the incompressibility and P the pressure. This is valid for a high-pressure liquid near its melting point, provided that the pressure is derived primarily from a strongly repulsive pair potential φ. This result is consistent with seismic data, except possibly in the lowermost region of the outer core, and demonstrates the approximate universality of dK/dP proposed by Birch (1939) and Bullen (1949). (2) dlnTM/dlnρ = (γCV ? 1)/(CV ? 32), where TM is the melting point, ρ the density, γ the atomic thermodynamic Grüneisen parameter and CV the atomic contribution to the specific heat in units of Boltzmann's constant per atom. This reduces to Lindemann's law for CV = 3 and provides further support for the approximate validity of this law. (3) It follows that the “core paradox” of Higgins and Kennedy can only occur if γ < 23. However, it is shown that γ < 23 ? ∫0 (?g/?T)ρ r(d/dr)(r2 φ)dr > 0, which cannot be achieved for any strongly repulsive pair potential φ and the corresponding pair distribution function g. It is concluded that γ > 23 and that the core paradox is almost certainly impossible for any conceivable core composition. Approximate calculations suggest that γ ~ 1.3–1.5 in the core. Further work on the thermodynamics of the liquid core must await development of a physically realistic pair potential, since existing pair potentials may be unsatisfactory.  相似文献   

9.
10.
The effects of the variation of magnetic grain size on the magnetic properties of rocks have been studied throughout a reversely magnetized basaltic dyke with concentric cooling zones.Except in a few tachylites in which the magnetic mineral is a Ti-rich titanomagnetite, in the bulk of the dyke the magnetization is carried by almost pure magnetite grains. Although the percentage p of these magnetic oxides varies slightly, the large changes in the various magnetic parameters observed across the dyke are essentially attributable to large variations in the grain size of the magnetic particles.From the outer scoria region, where the magnetic grains are a mixture of single-domain (SD) and superparamagnetic (SP) grains, to the tachylite zone with finely crystallized basaltic glass containing interacting elongated SD particles, one observes an increase of both the ratio of the saturation remanent magnetization and the saturation induced magnetization Jrs/Jis, the bulk coercive force Hc, the median destructive field MDF, the intensity of the remanent magnetization Jr, and the Koenigsberger ratio Q. In the tachylites these parameters reach unusually high values, for subaerial basalts:
JrsJis〉 = 0.3, 〈Hc〉 = 460 Oe, 〈MDF〉 = 620 Oe r.m.s., 〈Jr〉 = 2.7 · 10?2e.m.u. cm?3 〈Q〉 = 24
These parameters decrease in the basalt toward the centre of the dyke where pseudo-single-domain (pseudo-SD) particles coexist together with multidomain (MD) grains. The susceptibility remains approximately constant from the inner basalt to the tachylite, but increases in the scoria up to values 10 times higher owing to the presence of SP particles. The magnetic viscosity increases also drastically toward the margin of the dyke due to an increase of the fraction of the SD particles just above the superparamagnetic threshold.  相似文献   

11.
12.
The dislocation annihilation rate in experimentally deformed olivine single crystals was measured as a function of oxygen partial pressure (PO2). It was shown that the dislocation annihilation rate decreased with increasing PO2. This result is inconsistent with the reported PO2 dependence of creep rate (~ PO2+16) in single olivine crystals, thus indicating that the creep in single olivine crystals is not rate-controlled by recovery, under the experimentally investigated conditions.  相似文献   

13.
Measurements on acoustic pulses propagating in massive rock lead to a simple empirical relationship between the pulse rise time, τ and the time of propagation of a pulse, t:
τ=τ0+C)TQ?1dt
where τ0 is the initial rise time (at t = 0), Q is the anelastic parameter which may be expressed in terms of the fractional loss of energy per cycle of a sinusoidal wave, Q = 2π(ΔE/E)?1, and is assumed to be essentially independent of frequency, and C is a constant whose value we estimate experimentally to be 0.53 ± 0.04. Of the linear theories of seismic pulse attenuation, model 2 of Azimi et al. (1968) is favoured. Pulse shapes computed from equations of Futterman (1962) also give C = 0.5, but the pulse arrives earlier than in a non-attenuating medium with the same elasticity and density. Pulse shapes calculated using Strick's (1967, 1970, 1971) theory give values of C incompatible with our results. The observations suggest that a method of estimating the Q-structure of the earth from seismic pulse rise times may have a particular advantage over the spectral ratio method.  相似文献   

14.
Ultrasonic data for the velocities of the ilmenites MgTiO3 and CoTiO3 have been determined as a function of pressure to 7.5 kbar at room temperature for polycrystalline specimens hot-pressed in a piston-cylinder apparatus at pressures up to 30 kbar. Titanate and germanate ilmenites define divergent isostructural trends on a Birch diagram of bulk sound velocity (υφ) vs. density (ρ). On a υφ vs. mean atomic weight (M) diagram, however, all of the ilmenite consistent with a single υφM12 = constant trend. Elasticity systematics for isostructural sequences are used to e the bulk modulus (2.09 Mbar) and bulk sound velocity (7.4 km/sec) of MgSiO3-elmenite.  相似文献   

15.
16.
Virtually all dynamo models may be expected to give rise to a permanent differential rotation between mantle and core. Weak conductivity in the mantle permits small leakage currents which couple to the radial component of the magnetic field, producing a Lorentz torque. Mechanical equilibrium is achieved when a zero net torque is established at a critical rotation rate. An estimate of the drift is determined easily given the magnetic field structure predicted by any dynamo model. The result for the drift rate at the core-mantle interface along the equator is given by the product of three factors
Uφ1=UφRλ*L*
The first of these is a geometrical factor which depends only on the structural character of the field. For a variety of model fields, this factor ranges from 16 to 35. The second factor is the ratio of r.m.s. toroidal to poloidal field. This ratio is an (implicitly) adjustable parameter of both α2 and α-ω dynamos, and is a measure of the relative efficiency of the generation process for each component. The third (dimensional) term is the ratio of core magnetic diffusivity to core radius, 10?4 cm s?1.The result is essentially independent of the value of mantle diffusivity and its effective depth. The sign of the result may be positive or negative. For α2 dynamos a westward drift is produced by choosing α > 0 in the Northern Hemisphere, which constitutes a dynamical assertion about the dynamo process. For an r.m.s. toroidal field of the order of 15 Gs, based on fairly general considerations, a drift rate comparable to observation is expected.  相似文献   

17.
The compressibility of an individual ion is examined, in comparison with a known set of data for the alkali halides. A simple extrapolation of ionic radius to high pressure is not acceptable, because the pressure derivative of ionic radius changes for different salts. According to the classical concept of an elastic ion, the repulsive potential energy between the ions i and j is specified by the nature of each ion as:
i + ρ j) exp[i + ρj ? r)i + ρj)]
as a function of the interionic distance r. In this expression, qi and ρi are the ionic radius and ionic compressibility, respectively, in a suitably modified meaning. Such a form of the repulsive potential fits well to the data of lattice constants and bulk moduli. The parameters qi and ρi are evaluated for alkali and halogen ions, and an anion turns out to be much more compressible than a cation. The present treatment may be usefully applied to the minerals in the Earth's mantle, which contain only a few major ions.  相似文献   

18.
Thirty-one single crystals of synthetic forsterite, Fo100, were deformed in 69 compressional creep tests in a 0.1-MPa confining atmosphere of H2 + Ar. Temperature ranged from 1753 to 2023 K and stress σ (= σ1 - σ3) from 1.5 to 37.8 MPa. Steady-state creep under these conditions follows an empirical law of the form: strain rate ?? = Azigma;nexp(?QRT) where A, n, and Q are constants. General characteristics of Fo100 creep — uniformity of strain, shape change as a function of orientation of σ, relative deformation resistance of different orientations — match those of natural olivine single crystals of composition Fo92. Specific constants in the flow law, however, are distinctly new: for σ oriented along [111]c (equidistant from the three principal crystallographic axes), values for Fo100 are n = 2.9 ± 0.2 and Q = 0.67 ± 0.03 MJ/mol (160 ± 7 kcal/mol). A single law covers the range 3 < σ < 30 MPa and 1753 < T < 1953 K. Steady-state deformation is preceded by a transient period of strain softening. High strain rates at σ ? 10 MPa render the transient barely resolvable; it apparently displaces the steady-state flow law by approximately ?0.5% in strain. At σ ? 7.8 MPa, the amount of strain imparted to a sample of the [101]c orientation is typically <0.1% after one hour.  相似文献   

19.
20.
An anisotropic kappa velocity distribution with loss-cones is used to investigate whistler wave instability occurring in the magnetosphere. The elements of the dielectric tensor and dispersion relation using modified plasma dispersion function Zκ1(ξ) with loss-cone angle have been obtained for the linear waves propagating exactly parallel to a uniform local magnetic field in a homogeneous and hot plasma. The modified plasma dispersion function and integrals have been expressed in power-series form for argument of ξ≫1. Temporal/spatial growth rates for whistler wave in the magnetosphere have been evaluated by the method of numerical techniques. The results of such a kappa loss-cone distribution function on the generation of whistler waves are compared with those obtained by Maxwellian loss-cone distribution. Calculations show that either a loss-cone or a thermal anisotropy in the hot plasma component of the magnetosphere can lead to the generation of incoherent emission of low-frequency whistler waves. This methodology could be easily extended to the study of low frequency emissions from planetary magnetospheres under suitable choice of models of density and magnetic field and other plasma parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号