首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
张红兵 《清洗世界》2014,30(10):20-25
咪唑啉缓蚀剂是由以负电性O,S,N等原子为中心的极性基和以C,H为中心的非极性基组成。前者吸附于金属表面,后者位于离开金属的方向。当金属吸附了这类化合物时,可使表面能量状态稳定,又由于非极性基排列在金属表面形成疏水薄膜,可以抵抗电荷的移动,从而使腐蚀反应受到抑制。通过量子化学法计算缓蚀剂的缓蚀性能与EHOMO﹑ELUMO及ELUMO与EHOMO的差值ΔE关系来研究咪唑啉型缓蚀剂的亲水基团与其缓蚀性能的关系,以期为缓蚀剂的筛选、开发提供准确借鉴。  相似文献   

2.
3.
2-[(E)-{(1S,2R)-1-hydroxy-1-phenylpropan-2-ylimino}methyl]phenol has been synthesized and its influence on corrosion of mild steel in 1?M HCl solution has been studied by means of weight loss and electrochemical measurements under various circumstances. The inhibitor showed a maximum of 91?% of inhibition efficiency at 100?ppm. Interestingly, the inhibition efficiency has decreased on increasing the inhibitor concentration. This abnormal behavior is attributed to the release of phenolic hydrogen from the molecule. The mechanism of corrosion inhibition follows Langmuir adsorption isotherm. The negative ?G ads indicates the spontaneous adsorption of the inhibitor on mild steel surface. Potentiodynamic polarization studies show that it is a mixed type inhibitor with predominant cathodic inhibition. UV?CVisible spectroscopy of the inhibitor and inhibitor adsorbed on the mild steel confirmed the chemical interaction of the inhibitor with the metal surface.  相似文献   

4.
Corrosion inhibitory action of Commiphora caudata extract on the mild steel corrosion in 1 M H2SO4 acid medium is investigated by weight loss and electrochemical studies. The weight loss method shows that the inhibition efficiency increases with the increase of inhibitor concentration, time, and temperature. The polarization studies reveal that the extract acts as a mixed type inhibitor. In electrochemical impedance measurement, the semicircle curves indicated that the charge transfer process controlled the corrosion of mild steel. Thermodynamic parameter such as free energy value was negative, that indicates spontaneous adsorption of inhibitor on mild steel surface. In the presence of inhibitor decreases the activation energy value which shows the chemical adsorption. The Commiphora caudata extract is found to obey Langmuir adsorption isotherm. Scanning electron microscopy, FTIR, and Quantum chemical studies confirmed that the mild steel protect from the corrosion by adsorption of the inhibitor molecules on surface of metal.  相似文献   

5.
A series of 4-substituted N-(2-mercaptophenyl)salicylideneimine Schiff bases were synthesized and investigated for corrosion inhibition of mild steel in hydrochloric acid medium. Inhibition through adsorption mechanism is proposed for these inhibitors, which is well supported by electrochemical impedance spectroscopy, the Langmuir adsorption isotherm and Scanning Electron Microscope morphologies of inhibited and uninhibited mild steel specimens. The negative ?G ads indicates the spontaneous adsorption of the inhibitor on a mild steel surface. Among all the examined inhibitors, 5-bromo-N-(2-mercaptophenyl)salicylideneimine showed a higher inhibition efficiency. In order to reveal the usefulness of these Schiff bases as corrosion inhibitors under various circumstances, weight loss measurements were performed at various temperatures, acid concentrations and immersion times.  相似文献   

6.
The current research work was keen to examine the corrosion inhibition efficiency of mild steel (MS) in presence of aqueous extract of Araucaria heterophylla Gum (AHG) in 1?M H2SO4 medium. The phytoconstituents of the AHG were interpreted by GC-MS and corrosion inhibition efficiency was deduced using other techniques like weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Adsorption of inhibitor molecules on the mild steel surface was supported by Density Functional Theory (DFT) studies, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). It is seen from the results that the inhibitor exhibits optimum efficiency of 78.57% at 0.05% v/v on mild steel specimen in 1?M H2SO4 medium at room temperature. Tafel polarizations clearly show that the aqueous extract of AHG acts as a mixed type inhibitor. The change in the EIS parameters in presence of inhibitor is investigative of the protective layer formation of the mild steel surface. The adsorption is found to obey Langmuir adsorption isotherm. Thermodynamic and activation parameters for the corrosion inhibition process supported the physical adsorption mechanism.  相似文献   

7.
The inhibitive effect of four oleo chemicals (namely; 2-Pentadecyl-1,3-imidazoline (PDI), 2-Undecyl-1,3-imidazoline (UDI), 2-Heptadecyl-1,3-imidazoline (HDI), 2-Nonyl-1,3-imidazoline (NI)), regarded as green inhibitors, were studied for the corrosion protection of mild steel in 0.5 M H2SO4. The methods employed were weight loss, potentiodynamic polarization and electrochemical impedance techniques. Scanning electron microscopy (SEM) was carried out on the inhibited and uninhibited metal samples to characterize the surface. The purity of synthesized inhibitors was checked by FT-IR and NMR studies. The inhibition efficiency increased with increase in inhibitor concentration, immersion time and decreased with increase in solution temperature. No significant change in IE values was observed with increase in acid concentration. The best performance was obtained for UDI possessing 96.2% inhibition efficiency at 500 ppm concentration. The adsorption of the compounds on the mild steel surface in the presence of sulfuric acid obeyed Langmuir’s adsorption isotherm. The values obtained for free energy of adsorption and heats of adsorption suggest physical adsorption. The addition of inhibitor decreased the entropy of activation suggesting that the inhibitors are more orderly arranged along the mild steel surface. The potentiodynamic polarization data indicate mixed control. The electrochemical impedance study further confirms the formation of a protective layer on the mild steel surface through the inhibitor adsorption.  相似文献   

8.
Due to the harmful nature of the traditional inhibitors, in recent years researchers have an interest in using eco-friendly corrosion inhibitors. The plant extracts exhibit efficient corrosion inhibition properties due to the presence of a mixture of organic constituents starting from terpenoids to flavonoids. In the present study the inhibition of corrosion of mild steel in 1N H2SO4 solution using the leaf extract of Pongamia pinnata (P. pinnata) was investigated by the weight loss method, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) technique. Characterization of the leaf extract of P. pinnata was carried out using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. The effect of temperature and immersion time on the corrosion behavior of mild steel in sulfuric acid with different concentrations of P. pinnata was also studied. From the results it was found that the inhibition is mainly attributed to the adsorption of inhibitor molecules on the mild steel electrode surface. It was found that the adsorption of inhibitor molecules takes place according to the Langmuir, Temkin, and Freundlich adsorption isotherms. Kinetic as well as thermodynamic parameters were calculated, also confirming the strong interaction between inhibitor molecules and the electrode surface. The inhibition efficiency (I.E in %) was found to increase with increase in concentration of the inhibitor molecules and the maximum inhibition efficiency was attained at 100 ppm of the leaf extract. From the electrochemical studies it was found that the corrosion process was controlled by a mixed inhibition process and single charge transfer mechanism. Fourier transform infrared spectroscopy (FTIR) provided the confirmatory evidence for the adsorption of the extract molecules on the mild steel surface, which is responsible for the corrosion inhibition. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) experiments also confirmed the presence of inhibitor molecules on the mild steel surface. From all these experimental results, it can be concluded that the leaf extract of P. pinnata acted as a good corrosion inhibitor for mild steel in 1N sulfuric acid medium even at lower inhibitor concentrations.  相似文献   

9.
The inhibition efficiency of Zn2+, 3-phosphonopropionic acid (3-PPA), benzotriazole (BTA) and two synthesized benzotriazole derivatives namely 1-(2-pyrrole carbonyl) benzotriazole (PCBT) and 1-(2-thienylcarbonyl) benzotriazole (TCBT) were evaluated as inhibitors for the corrosion of mild steel in ground water. The inhibition efficiencies of PCBT and TCBT in combination with Zn2+ and 3-PPA were also investigated and the results were compared with BTA. In order to study the corrosion rate and inhibition efficiency we employed potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Further characterization using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) demonstrates the adsorption of inhibitor and the formation of corrosion products on the mild steel surface, respectively. Combination of PCBT along with Zn2+ and 3-PPA shows better corrosion inhibition efficiency than other inhibitor combinations and the individual inhibitors.  相似文献   

10.
The inhibitive effect of hydroxyethyl cellulose (HEC) on mild steel corrosion in aerated 0.5 M H2SO4 solution was studied using gravimetric and electrochemical techniques. The effect of temperature on corrosion and inhibition was also investigated. The results show that hydroxyethyl cellulose functioned as a good inhibitor in the studied environment and inhibition efficiency increased with concentration of inhibitor. Potentiodynamic polarization measurements revealed that HEC inhibited both the cathodic and anodic partial reactions of the corrosion processes. Impedance results clearly show that HEC inhibited the corrosion reaction by adsorption onto the metal/solution interface by significantly decreasing the double layer capacitance (C dl ). This result was greatly pronounced in the presence of the inhibitor system (HEC + KI) that contains halide additive. Temperature studies revealed an increase in inhibition efficiency with rise in temperature. The adsorption behavior was found to obey the Freundlich isotherm. The values of activation energy, heat of adsorption, and standard free energy suggest that there was transition from physical to chemical adsorption mechanism of HEC on the mild steel surface. Quantum chemical calculations using the density functional theory (DFT) was employed to determine the relationship between molecular structure and inhibition efficiency.  相似文献   

11.
Three triazole derivatives (4-chloro-acetophenone-O-1′-(1′,3′,4′-triazolyl)-metheneoxime (CATM), 4-methoxyl-acetophenone-O-1′-(1′,3′,4′-triazolyl)-metheneoxime (MATM) and 4-fluoro-acetophenone-O-1′-(1′,3′,4′-triazolyl)-metheneoxime (FATM)) have been synthesized as new inhibitors for the corrosion of mild steel in acid media. The inhibition efficiencies of these inhibitors were evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. Then the surface morphology was studied by scanning electron microscopy (SEM). The adsorption of triazole derivatives is found to obey Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The relationship between molecular structure of these compounds and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were computed.  相似文献   

12.
In the present investigation, two thiazolidinedione derivatives, 5-[(2-(3,4,5-trimethoxyphenyl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methylidene]-1,3-thiazolidine-2,4-dione (Inh I) and 5-[2-(3,4,5-trimethoxyphenyl)-6-(4-methoxylphenyl)-imidazo[2,1-b][1,3,4]thiadiazol-5-yl)methylidene]-1,3-thiazolidine-2,4-dione (Inh II) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss, electrochemical polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of these inhibitors increased with increasing concentration. The effect of temperature on the corrosion rate was investigated, and some thermodynamic parameters were calculated. Polarization studies showed that both studied inhibitors were of mixed type in nature. The adsorption of inhibitors on the mild steel surface in acid solution was found to obey the Langmuir adsorption isotherm. Scanning electron microscopy (SEM) was performed on inhibited and uninhibited mild steel samples to characterize the surface. The semi-empirical AM1 method was employed for theoretical calculation of highest (E HOMO), and lowest unoccupied molecular orbital (E LUMO) energy levels, energy gap (E LUMO ? E HOMO), dipole moment (μ), global hardness (γ), softness (σ), binding energy, molecular surface area, chemical potential (Pi), and the fraction of electrons transferred from the inhibitor molecule to the metal surface (ΔN). The results were found to be consistent with the experimental findings.  相似文献   

13.
Red cabbage dye (RCD) and its inhibitory effect on the corrosion of mild steel in 1 N HCl and 1 N H3PO4 was investigated by weight loss and electrochemical methods. RCD was a good inhibitor for mild steel corrosion in acid solutions, affecting anodic and cathodic reactions. The inhibition efficiency increased with RCD concentrations, with more pronounced effects observed in HCl. The effect of temperature on corrosion inhibition was studied and kinetic activation parameters were calculated and discussed. The inhibition mechanism of RCD on the mild steel surface was related to the dye make up and behavior in acid solutions.  相似文献   

14.
The corrosion inhibition efficiency of a newly synthesized Schiff's base for the corrosion of mild steel was studied in 1.0 M HCl and 0.5 M H2SO4 solutions. The results of weight loss measurements, electrochemical impedance and potentiodynamic polarization measurements consistently demonstrated that the Schiff's base synthesized is a good corrosion inhibitor with an inhibitory efficiency of approximately 92% at an optimum inhibitor concentration of 600 mg/L. The inhibition in both of the corrosive media was observed to be a mixed type. The potential of zero charge (PZC) at the metal–solution interface was determined for both the inhibited and uninhibited solutions to provide the mechanism of inhibition. The inhibitor formed a film on the metal surface through chloride or sulfate bridges depending upon the medium. The temperature dependence of the corrosion rate was also studied in the temperature range from 27 to 50 °C. The value of the activation energy (Ea) calculated showed that the inhibition film formation on the metal surface occurred through chemisorption. The thermodynamic parameters such as the adsorption equilibrium constant (Kads) and the free energy of adsorption (ΔGads) were calculated and discussed. Several adsorption isotherms were tested and the experimental data fit well with the Langmuir adsorption isotherm.  相似文献   

15.
An example of a new class of corrosion inhibitors, namely, 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole (DAPT) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 at 30 °C was investigated by various corrosion monitoring techniques. A preliminary screening of the inhibition efficiency was carried out using weight loss measurements. At constant acid concentration, inhibitor efficiency increases with concentration of DAPT and is found to be more efficient in 0.5 M H2SO4 than in 1 M HCl. Potentiostatic polarization studies showed that DAPT is a mixed-type inhibitor. The effect of temperature on the corrosion behaviour of mild steel in 1 M HCl with addition of DAPT was studied in the temperature range from 25 to 60 °C. Its was shown that adsorption is consistent with the Langmuir isotherm for 30 °C. The negative free energy of adsorption in the presence of DAPT suggests chemisorption of thiadiazole molecules on the steel surface.  相似文献   

16.
An electrochemical and statistical view of methanol extract of Luffa aegyptiaca leaves (MLA) on the corrosion inhibition of mild steel (MS) in 0.5 M H2SO4 medium were investigated by potentiodynamic polarisation and electrochemical impedance spectroscopy. Polarization studies showed that the MLA acts as mixed type inhibitor with predominant cathodic behaviour. The percentage inhibition efficiency was found to increase with MLA concentration and decreased with the temperature. Thermodynamic parameter such as free energy value was negative, that indicates spontaneous adsorption of inhibitor on MS surface. Adsorption of MLA was found to obey Langmuir isotherm. The analysis of variance studies showed that the inhibition efficiencies calculated from the different electrochemical parameters are statistically significant. Surface studies were performed by Fourier transform infrared spectroscopy and atomic force microscopy.  相似文献   

17.
In this work, three types of nonionic surfactant as corrosion inhibitors were synthesized. The chemical structure of the prepared inhibitors was confirmed using FT‐IR and 1H‐NMR spectroscopy. The surface tension and thermodynamic properties of these inhibitors were investigated. The corrosion inhibition efficiency of these surfactants was investigated on a carbon steel surface in 1 M HCl solution by weight loss and electrochemical measurements. Untreated and treated steel surfaces were characterized by scanning electron microscopy. Results show that the inhibition efficiency of the prepared inhibitors increases with increasing the ethylene oxide units. Also, the potentiodynamic polarization curves indicated that the investigated inhibitors behave as a mixed type inhibitor. Adsorption of these surfactants on the carbon steel surface was found to obey Langmuir's adsorption isotherm. The computed quantum chemical properties viz., electron affinity (EA), highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), energy gap ΔE = EHOMO ? ELUMO, dipole moment (μ), polarizability and total energy (ET) show good correlation with experimental inhibition efficiency.  相似文献   

18.
The inhibitory effect of 3a,6a-diphenyltetrahydro-1H-imidazo [4,5-c] [1, 2, 5] thiadiazole-5(3H)-thione 2,2-dioxide (TTU) on the corrosion behaviour of mild steel in 0.5 M H2SO4, at (30 ± 0.5) °C was studied by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electron microscopy measurements. The effect of inhibitor concentration on the corrosion rate, surface coverage and inhibition efficiency is investigated. Results show that TTU exerts a strong inhibiting effect on mild steel corrosion and acts as a cathodic-type inhibitor. TTU does not affect the mechanism of the cathodic reaction while the anodic reaction mechanism changes upon addition of the inhibitor. Possible mechanistic pathways for the inhibition process are proposed. The inhibition efficiency of TTU may be due to either the adsorption of inhibitor molecules building a protective film or the formation of an insoluble complex of the inhibitor with metal cations. TTU adsorption obeys the Langmuir model.  相似文献   

19.
Acetyl thiourea chitosan polymer (ATUCS) has been synthesized and evaluated as corrosion inhibitor. The electrochemical behavior of mild steel in naturally aerated 0.5 M H2SO4 acid containing different concentrations of ATUCS has been studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements and surface examination via scanning electron microscope (SEM) technique. The results of EIS showed that the resistance (Rt) increases slightly with increasing immersion time indicating a slight decrease in corrosion rate of the steel with time. Also, the corrosion rate increases with either increasing temperature or decreasing the polymer concentration as observed by polarization technique. Electrochemical impedance spectroscopy measurements under open-circuit conditions confirmed well polarization results. ATUCS has shown very good inhibition efficiency (IE) in 0.5 M sulphuric acid solution reaches to 94.5% for 0.76 mM concentration. IE of this compound has been found to vary with the concentration of the polymer solution, immersion time and temperature.  相似文献   

20.
Corrosion inhibition property of N-(phenylcarbamothioyl)benzamide (PCB) on mild steel in 1.0 M HCl solution has been investigated using chemical (weight loss method) and electrochemical techniques (potentiodynamic polarization and AC impedance spectroscopy). The inhibition efficiencies obtained from all the methods are in good agreement. The thiourea derivative is found to inhibit both anodic and cathodic corrosion as evaluated by electrochemical studies. The inhibitor is adsorbed on the mild steel surface according to Langmuir adsorption isotherm. The adsorption mechanism of inhibition was supported by spectroscopic (UV-visible, FT-IR, XPS), and surface analysis (SEM-EDS) and adsorption isotherms. The thermodynamic parameter values of free energy of adsorption (ΔGads) reveals that inhibitor was adsorbed on the mild steel surface via both physisorption and chemisorption mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号