首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The direct electrochemistry of cytochrome C can be performed in weak acidic and basic aqueous solutions. Cytochrome C can be deposited as a stable and electrochemically active film on a deoxyribonucleic acid (DNA) modified glassy carbon electrode. These films can also be produced on gold, platinum, and transparent semiconducting tin oxide electrodes. Two-layer modified electrodes containing cytochrome C and a DNA film were prepared by the deposition of cytochrome C on a DNA film modified electrode. The cytochrome C/DNA film was electrocatalytically oxidation active for l-cysteine in a pH 8.3 tris(hydroxymethyl)aminomethane (TRIS)-buffered aqueous solution through both FeIII and FeIV species. The electrocatalytic oxidation current developed from the anodic peak of the redox couple. The electrocatalytic oxidation properties of ascorbic acid, NH2OH, N2H4, and SO32− by a cytochrome C/DNA film were also determined, and shown to be electrocatalytically active. An electrochemical quartz crystal microbalance, cyclic voltammetry, and direct spectroelectrochemistry were used to study in situ DNA deposition on a gold disc electrode and cytochrome C deposition on DNA/Au and DNA/GC films. The direct electrochemistry of cytochrome C can also be performed, and it can be deposited as a stable and electrochemically active film on polyvinyl sulfonate, polystyrene sulfonate, TiO2, and polyethylene glycol modified glassy carbon electrodes. The results show that cytochrome C interacts with, and deposits on, a DNA film modified electrode, and that the cytochrome C (FeIII) oxidized form is more easily deposited on a DNA film than the cytochrome C (FeII) reduced form.  相似文献   

2.
Ni–Al–NO3 layered double hydroxides (LDH) are electrodeposited on the glassy carbon (GC) electrodes and the electrocatalytic activities of the modified electrodes toward methanol oxidation are studied in detail by cyclic voltammetry and chronoamperometry. Various factors affecting the electro-oxidation of methanol are investigated for optimizing the electrocatalytic properties and making the mechanism clearly such as methanol concentration, scan rate, KOH concentration, Ni:Al ratio of Ni–Al LDH used. The results show that Ni–Al–NO3 LDH exhibit higher electrocatalytic activity for methanol oxidation and better stability than that of Ni(OH)2 prepared under the same condition. The LDH with Ni:Al ratio of 3:1 display a good electrocatalytic activity for methanol oxidation in 0.5 M KOH. The mechanism of methanol oxidation on Ni–Al LDHf/GC electrode is also proposed according to the experimental results, involving in both a chemical oxidation via Fleischmann's mechanism and a direct electro-oxidation on the Ni3+ oxide surface.  相似文献   

3.
The electrocatalytic oxidation of glycerol has been investigated at platinum and gold electrodes, both in acid and in alkaline medium. In acid medium only platinum electrodes are electroactive, whereas in alkaline medium both electrodes, particularly gold electrodes, give relatively high current densities (about 20 mA cm?2 for 0.1 M glycerol at 25°C).By varying the reaction parameters (electrode potential, concentrations of glycerol and of hydroxylions), it is possible to determine the transfer coefficient and the reaction orders. The fractional values obtained may be interpreted by formulating a reaction mechanism involving adsorbed intermediates.  相似文献   

4.
Umasankar Yogeswaran 《Carbon》2007,45(14):2783-2796
A conductive composite film containing functionalized multi-walled carbon nanotubes (fMWCNTs), gold nanoparticles (Au) with hydroxypropyl-β-cyclodextrin (HPβCD) as catalysts have been synthesized on glassy carbon, gold and on indium tin oxide electrodes by potentiostatic methods. The presence of fMWCNTs and HPβCD in the composite film enhances the active surface coverage concentration of Au by 397.0%. The presence of nanoparticles of gold catalyst in the film enhances the functional properties and produces an overall increase in the sensitivity of the modified electrodes. These modified electrodes exhibit promising electrocatalytic activity towards the oxidation of tyrosine (TYR), guanine (GU), adenine (AD) and thymine (THY) present in pH 7.4 aqueous solutions. Well separated voltammetric peaks are obtained between TYR and GU (80 mV), GU and AD (290 mV), AD and THY (185 mV) present in the analyte mixture. The sensitivity values of the composite films from cyclic voltammetry (CV) and semi derivative differential pulse voltammetry (DPV) show that, the composite film modified electrodes are efficient and they could be applied in biosensor devices. However, a detailed comparison between the sensitivities obtained using CV and semi derivative DPV shows that, the sensitivity obtained in semi derivative DPV technique is higher than CV. Electrochemical quartz crystal microbalance, scanning electrochemical microscope and scanning electron microscope techniques have been used for the electrochemical characterizations and surface morphology studies.  相似文献   

5.
The properties of the interface between platinum, gold and glassy carbon electrodes and a deep eutectic ionic liquid based on choline chloride and glycerol were assessed using cyclic voltammetry and electrochemical impedance spectroscopy. The double layer differential capacitance, obtained from electrochemical impedance, reveals a slight dependence of the potential but it is sensitive to the electrode material. In contrast to high temperature inorganic melts the differential capacitance increases with temperature.  相似文献   

6.
Direct electrochemistry of hemoglobin can be performed in acidic and basic aqueous solutions in the pH range 1-13, using stable, electrochemically active films deposited on a didodecyldimethylammonium bromide (DDAB) modified glassy carbon electrode. Films can also be produced on gold, platinum, and transparent semiconductor tin oxide electrodes. Hemoglobin/DDAB films exhibit one, two, and three redox couples when transferred to strong acidic, weak acidic and weak basic, and strong basic aqueous solutions, respectively. These redox couples, and their formal potentials, were found to be pH dependent. An electrochemical quartz crystal microbalance and cyclic voltammetry were used to study the in situ deposition of DDAB on gold disc electrodes and hemoglobin deposition on DDAB film modified electrodes. A hemoglobin/DDAB/GC modified electrode is electrocatalytically reduction active for oxygen and H2O2, and electrocatalytically oxidation active for S2O42− through the Fe(III)/Fe(II) redox couple. In the electrocatalytic reduction of S4O62−, S2O42−, and SO32−, and the dithio compounds of 2,2′-dithiosalicylic acid and 1,2-dithiolane-3-pentanoic acid, the electrocatalytic current develops from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in neutral and weakly basic aqueous solutions. Hemoglobin/DDAB/GC modified electrodes are electrocatalytically reduction active for trichloroacetic acid in strong acidic buffered aqueous solutions through the Fe(III)/Fe(II) redox couple. However, the electrocatalytic current developed from the cathodic peak of the redox couple at a potential of about −0.9 V (from the Fe(II)/Fe(I) redox couple) in weak acidic and basic aqueous solutions. The electrocatalytic properties were investigated using the rotating ring-disk electrode method.  相似文献   

7.
Carbon supports (glassy carbon and Vulcan XC72 powder) were modified by electrochemical and spontaneous grafting of phenylsulfonic acid (PSA) or trifluoromethylphenyl (TFMP) groups via diazonium ion reduction. The effectiveness of the grafting was confirmed electrochemically, by XPS measurements and elemental analyses. The hydrophobic or hydrophilic character of carbon surfaces was evidenced by measuring the contact angles of drops of different liquids (water, ethylene glycol and glycerol) in heptane. The surface energy was calculated and it was found, for example, that spontaneous grafting of a glassy carbon surface by PSA groups led to an increase by a factor 20 of the surface energy compared with an unmodified glassy carbon surface. The study of the grafting of such groups on XC72 carbon powder indicated that a very low grafting ratio (in wt%) led to a significant change in the macroscopic properties of the powder. Thermogravimetric analysis coupled with mass spectroscopy measurements (TGA-MS) showed that these grafted layers were thermally stable even in the presence of dispersed platinum nanoparticles. It was shown by cyclic voltammetry that the carbon substrate modification did not affect the electrochemical behavior of platinum catalyst, since the same active surface area was determined on Pt-XC72, Pt-PSA-XC72 and Pt-TFMP-XC72 catalysts.  相似文献   

8.
R. Zhou  R. Yue  F. Jiang  Y. Du  P. Yang  C. Wang  J. Xu 《Fuel Cells》2012,12(6):971-977
A Pt‐modified Au catalyst featured with novel layered structures and ultra‐low Pt loading has been designed and electrochemically fabricated on a glassy carbon (GC) electrode. SEM characterization suggests that as‐formed Pt/Au/GC electrode grows in a Stranski–Krastanov mode, resulting in a nearly ideal layered structure with Au at the inner layer and Pt at the outer layer. The electrocatalytic activity of the synthesized Pt/Au/GC electrode towards formic acid electrooxidation was studied, and comparative experiments with other modified electrodes (i.e., Pt/GC, Pt/Au, and Pt/Pt) were also conducted. As a result, the electrocatalytic activity of the outer‐layered Pt depends significantly on the intrinsic properties of the substrates. The prepared Pt/Au/GC electrode with Au nanoparticles modified GC as the substrate shows remarkable catalytic activity for the formic acid oxidation, much higher than that of its counterparts, Pt/GC, Pt/Au, and Pt/Pt electrodes. Additionally, the measured electrochemical impedance spectra indicate that the charge‐transfer resistance for formic acid electrooxidation on Pt/Au/GC electrode is smaller than that on other Pt modified electrodes.  相似文献   

9.
采用化学原位一步还原法制得纳米铂修饰玻碳电极,并测试比较了其在酸性介质和碱性介质中对乙二醇氧化的电催化作用.结果表明,相比铂片电极,纳米铂修饰玻碳电极对乙二醇表现出更好的电催化性能,且该修饰电极在碱性介质中对乙二醇的催化作用更明显.  相似文献   

10.
The electrochemistry of water-soluble iron porphyrins (Fe(n-TMPyP)) (where n=2 and 4) was studied as an electrochemically active film on DNA modified glassy carbon, gold, platinum, and transparent semiconductor tin oxide electrodes in solutions of various pH values. The two layers of the modified electrode containing the iron porphyrin and the DNA film were prepared by depositing the iron porphyrin on a DNA film modified electrode. The Fe(4-TMPyP)/DNA film was electrocatalytic reductive for p-nitrobenzoic acid in a weak acidic, or neutral aqueous solution through an FeII species, and the electrocatalytic reduction peak potential became more negative than the cathodic peak of the FeIII/II redox couple. The electrocatalytic reduction properties by the Fe(2-TMPyP)/DNA film as catalysts for nitrite reduction have also been determined, and shown to be active through an FeI species and to be pH-dependent. The electrocatalytic oxidation properties of nitrite by Fe(n-TMPyP)/DNA (for n=2 and 4) film have also been determined and shown to be active through an FeIV species with the electrocatalytic oxidation efficiency of NO2 with FeIV(O)(n-TMPyP) being higher than with (HO)FeIV(O)(n-TMPyP). The electrocatalytic oxidation efficiency of NO2 by iron porphyrin is pH-dependent. The electrocatalytic reduction of p-nitrophenol by Fe(2-TMPyP)/DNA film are also discussed.  相似文献   

11.
In this work, we present a comparison among three glassy carbon electrodes modified by Co-porphyrin, ortho-phenylenediamine, or both simultaneously. This comparison shows the differences among the electrochemical behavior, morphological characteristics and electrocatalytic behavior toward the sulfite oxidation of these electrodes. The electrode modified by Co-porphyrin, ortho-phenylenediamine and copolymer has been investigated in detail for the comparision of electrocatalytic activity towards the sulfite oxidation. In the case of the glassy carbon-modified electrodes, the presence of the copolymer enhances the electrocatalytic performance of the modified electrodes in spite of the non-catalytic response (compared to the bare glassy carbon) of both homopolymer-modified electrodes toward the oxidation of sulfite. Additionally, the oxidation of sulfite extracted from red wine is shown. The copolymer-modified electrode is capable of oxidizing the extracted free sulfite in a 0.02 M NaOH solution. Through the addition of standards method, a concentration of free sulfite in a Chilean red wine sample was determined to be 44 ppm.  相似文献   

12.
Platinized lead deposits, Pt(Pb), have been formed on glassy carbon (GC) and platinum electrodes by a two-step process, whereby a controlled amount of Pb was electrodeposited onto the substrates and was subsequently coated with a thin Pt layer upon immersion of the Pb/GC or Pb/Pt electrodes into a chloroplatinic acid solution. The spontaneous surface replacement of Pb by Pt resulted in Pt(Pb)/GC or Pt(Pb)/Pt electrodes which consisted of dispersed Pt(Pb) particles and displayed typical Pt surface electrochemistry in deaerated acid solutions. When tested as methanol oxidation anodes, these electrodes exhibited enhanced electrocatalytic activity both during voltammetric and constant potential experiments. This behaviour is attributed to an electronic effect of the underlying Pb onto the Pt surface layer.  相似文献   

13.
The catalytic activity of platinum modified polypyrrole films prepared in different ways was studied for the methanol oxidation reaction. Surprisingly, no catalytic activity was observed for films modified with colloidal platinum particles incorporated into the film during its synthesis or for the film synthesised with tetrachloroplatinate complex as a nucleophilic counter-ion, which was subsequently cathodically reduced. On the other hand, high catalytic activity was observed for platinum deposited onto pre-synthesised polypyrrole film. The platinum load, film thickness and potential of platinum deposition were found to be important parameters. High electrocatalytic activity was also observed for platinum layers deposited directly onto the glassy carbon (GC) support. However, in the latter case the stability of the electrocatalytic activity was lower when compared with the polypyrrole film modified by cathodically deposited Pt.  相似文献   

14.
Platinum dispersed in a polyaniline film is a better catalyst than smooth Pt for ethylene glycol electrooxidation in perchloric acid aqueous solutions. The catalytic activity of the platinum microparticles is further enhanced when Ru, Sn or both are codeposited. The PAni/Pt–Sn assembly shows the highest electrocatalytic activity of the electrodes examined. Underpotential deposition of Tl and Bi on dispersed Pt inhibits EG electrooxidation while Pb causes significant catalysis only with a specific preparation method electrocatalyst. The morphology and the identity of the metallic dispersion is examined by transmission electron microscopy.  相似文献   

15.
采用循环伏安法制备聚苯胺(PAN)/聚砜(PSF)复合膜修饰电极,在其上电沉积铂粒子,制得载铂聚苯胺/聚砜复合膜修饰电极,用循环伏安法和交流阻抗法研究它对甲醇的电催化氧化行为。复合膜的化学组分用FTIR进行表征,复合膜内层载铂后的表面形态用SEM进行表征。结果表明,复合膜的内层(与工作电极接触的一面)是聚苯胺,外层(与溶液接触的一面)是聚砜,铂粒子在复合膜内层的多孔聚苯胺上均匀沉积,从而使载铂聚苯胺/聚砜复合膜修饰电极对甲醇有好的电催化氧化性能。  相似文献   

16.
《Electrochimica acta》1995,40(17):2739-2748
Polypyrrole (Au/PPy) and polyaniline (Au/PAni) electrodes were prepared and their activities towards oxygen reduction in acid medium were examined. The insertion of iron or cobalt phthalocyanines into the conducting polymer during the electropolymerisation process was carried out and the modified electrodes were characterised by esr and uv-visible differential reflectance spectroscopies. The electrocatalytic behaviour of such electrodes towards oxygen reduction was examined.The influence of the central metal of the macrocycle and of the kind of polymer was investigated. It appears that the modified electrodes containing iron tetrasulfonated phthalocyanine are the most active ones but they are less stable than electrodes containing cobalt tetrasulfonated phthalocyanine. The comparison of the electrocatalytic behaviour of the Au/polymer-FeTsPc electrode with that of a bare platinum electrode towards oxygen reduction indicates that the reduction process is the same for both electrodes. The Au/polymer-FeTsPc electrode allows then to reduce the oxygen molecule mainly via the 4-electron process into water as main product.In the case of the Au/polymer-CoTsPc electrode, the role of the conducting polymer in the whole reduction process is demonstrated. The Au/PAni-CoTsPc electrode allows to reduce the oxygen molecule mainly via the 2-electron reaction into hydrogen peroxide, whereas the Au/PPy-CoTsPc electrode allows it to reduce into water via the hydrogen peroxide formation for potentials lower than 0.4 V rhe.  相似文献   

17.
Gold nanopillar array electrodes were prepared by electrochemical deposition of gold into the nanopores of anodic aluminum oxide membrane placed onto the gold thin film electrode surface, which was in advance modified with cysteamine self-assembled monolayer as an anchoring layer. The Au nanopillar electrode is electrochemically stable and consists of highly dense, upstanding pillars assembled on the cysteamine monolayer. The structural morphology and chemical composition of the nanoarray electrode was characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Electrochemical measurements indicate that the Au nanopillar electrode possesses high electrocatalytic activities in the reduction of hydrogen peroxide and molecular oxygen, especially in glucose oxidation due to its higher electroactive surface area. The electro-oxidation studies of several electroactive neurotransmitters demonstrate that the nanopillar electrode can be utilized as a promising material for the construction of novel electrochemical sensor.  相似文献   

18.
碳纳米管上电沉积钯对乙醇的电催化氧化研究   总被引:1,自引:0,他引:1  
采用电化学循环伏安法沉积Pd纳米颗粒,在碳纳米管(CNT)电极表面获得了粒径约为20 nm而且分散性良好的Pd纳米颗粒,而玻碳(GC)电极表面上Pd纳米颗粒趋向于堆积形成紧密的Pd金属薄膜。研究发现,在碱液中Pd/CNT电极对乙醇的催化活性要高于Pd/GC电极,而交流阻抗实验发现,Pd/GC电极的阻抗半圆明显大于碳纳米管,表明了Pd/CNT电极对乙醇的催化速率明显优于Pd/GC电极。不同Pd载量以及环境温度影响实验发现,Pd/CNT电极上峰电流的增长速率要明显大于Pd/GC电极,而不同乙醇浓度实验进一步表明,Pd/CNT电极对于乙醇浓度的响应要比Pd/GC的灵敏。  相似文献   

19.
A novel conductive composite film containing functionalized multi-walled carbon nanotubes (f-MWCNTs) with poly (neutral red) (PNR) was synthesized on glassy carbon electrodes (GC) by potentiostatic method. The composite film exhibited promising electrocatalytic oxidation of mixture of biochemical compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) in pH 4.0 aqueous solutions. It was also produced on gold electrodes by using electrochemical quartz crystal microbalance technique, which revealed that the functional properties of composite film were enhanced because of the presence of both f-MWCNTs and PNR. The surface morphology of the polymer and composite film deposited on transparent semiconductor tin oxide electrodes were studied using scanning electron microscopy and atomic force microscopy. These two techniques showed that the PNR was fibrous and incorporated on f-MWCNTs. The electrocatalytic responses of neurotransmitters at composite films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experiments revealed that the difference in f-MWCNTs loading present in the composite film affected the electrocatalysis in such a way, that higher the loading showed an enhanced electrocatalytic activity. From further electrocatalysis studies, well separated voltammetric peaks were obtained at the composite film modified GC for AA, DA and UA with the peak separation of 0.17 V between AA-DA and 0.15 V between DA-UA. The sensitivity of the composite film towards AA, DA and UA in DPV technique was found to be 0.028, 0.146 and 0.084 μA μM−1, respectively.  相似文献   

20.
The electrocatalytic activities of various metals and alloys in the anodic oxidation of hydrazine in alkaline solution have been studied by means of palladium membrane method in which the contact side of the membrane was electrodeposited with a thin layer of the electrocatalytic metals. The electrode materials studied can be divided into two groups. In the first group, platinum, rhodium, cobalt, cobalt—phosphor and cobalt—boron, anodic current of hydrogen oxidation on the diffusion side decreased remarkably with an increase of the electro-oxidation of hydrazine on the contact side. The anodic oxidation of hydrazine occurs through the preliminary stepwise dehydrogenation on this group metals.On the other hand, the amount of sorbed hydrogen in the palladium, gold, nickel and nickel—phosphor electrodes increased with an increase of the electro-oxidation of hydrazine on the contact side. Thus, the anodic oxidation of hydrazine on the latter group metals may proceed through the anodic formation of the intermediate radicals which readily decompose into hydrogen and the related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号