首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A non-enzymatic biosensor was developed using boron-doped nanocrystalline diamond (BDND) based on a Cu electrode with Cu(OH)2 dendritic architecture. The Cu(OH)2 nanoflower electrode was covered with a BDND layer using an electrostatic self-assembly seeding method with nanodiamond particles and hot-filament chemical vapor deposition. X-ray diffraction and Raman spectral analysis confirmed that the BDND nanoflower electrode was synthesized onto Cu(OH)2 nanoflowers. Field-emission scanning electron microscope images showed that the fabricated electrodes were nanoflowers possessing large surface areas. From cyclic voltammetry, the peak currents of an BDND/Cu(OH)2/Cu electrode was about 7, 6.2, and 5.9 times higher than that of the Cu foil, Cu(OH)2/Cu, and BDND/Cu electrodes, respectively. A biosensor based on BDND/Cu(OH)2/Cu exhibited excellent performance for glucose detection, and it had a linear detection range of 0 to 6 mM, a correlation coefficient of 0.9994, a low detection limit of 9 μM, and a high sensitivity of 2.1592 mA mM− 1 cm− 1.  相似文献   

2.
Direct electron transfer from boron-doped diamond electrodes to heme undecapeptide and horseradish peroxidase (HRP) was examined and evaluated for the application to H2O2 biosensors. As-grown and oxygen plasma-treated diamond electrodes on which heme peptide is adsorbed exhibited cathodic current responses to H2O2 on the basis of the direct electron transfer. In a comparative study of carbon electrodes on which heme peptide was adsorbed, an oxygen plasma-treated diamond electrode exhibited responses comparable with those of an edge-oriented pyrolytic graphite (EOPG) electrode, despite much smaller roughness. However, electron transfer to compounds I and II of HRP from the diamond electrodes was much slower than that from EOPG or glassy carbon, suggesting that the pi electrons of an sp2 carbon may play an important role in the direct electron transfer to the heme moiety of HRP. To examine the applicability of heme peptide-modified diamond electrodes to oxidase-based biosensors, anodic current responses of the oxygen plasma-treated diamond electrode to possible interfering agents, ascorbic acid and uric acid, were examined and compared with those of EOPG. Since the diamond electrode exhibited much less sensitivity to those interfering agents, the heme peptide-modified diamond electrode should be a promising H2O2 biosensor for the application to oxidase-based biosensors.  相似文献   

3.
Electrochemical oxidation of oxalic acid has been investigated at bare, highly boron-doped diamond electrodes. Cyclic voltammetry and flow injection analysis with amperometric detection were used to study the electrochemical reaction. Hydrogen-terminated diamonds exhibited well-defined peaks of oxalic acid oxidation in a wide pH range. A good linear response was observed for a concentration range from 50 nM to 10 microM, with an estimated detection limit of approximately 0.5 nM (S/N = 3). In contrast, oxygen-terminated diamonds showed no response for oxalic acid oxidation inside the potential window, indicating that surface termination contributed highly to the control of the oxidation reaction. An investigation with glassy carbon electrodes was conducted to confirm the surface termination effect on oxalic acid oxidation. Although a hydrogen-terminated glassy carbon electrode showed an enhancement of signal-to-background ratio in comparison with untreated glassy carbon, less stability of the current responses was observed than that at hydrogen-terminated diamond.  相似文献   

4.
The electrochemistry of histamine and serotonin in neutral aqueous media (pH 7.2) was investigated using polycrystalline, boron-doped diamond thin-film electrodes. Cyclic voltammetry, hydrodynamic voltammetry, and flow injection analysis (FIA) with amperometric detection were used to study the oxidation reactions. Comparison experiments were carried out using polished glassy carbon (GC) electrodes. At diamond electrodes, highly reproducible and well-defined cyclic voltammograms were obtained for histamine with a peak potential at 1.40 V vs SCE. The voltammetric signal-to-background ratios obtained at diamond were 1 order of magnitude higher than those obtained for GC electrodes at and above 100 microM analyte concentrations. A linear dynamic range of 3-4 orders of magnitude and a detection limit of 1 microM were observed in the voltammetric measurements. Well-defined sweep rate-dependent voltammograms were also obtained for 5-hydroxytryptamine (5-HT). The characteristics of the voltammogram indicated lack of adsorption of its oxidation products on the surface. No fouling or deactivation of the electrode was observed within the experimental time of several hours. A detection limit of 0.5 microM (signal-to-noise ratio 13.8) for histamine was obtained by use of the FIA technique with a diamond electrode. A remarkably low detection limit (10 nM) was obtained for 5-HT on diamond by the same method. Diamond electrodes exhibited a linear dynamic range from 10 nM to 100 microM for 5-HT determination and a range of 0.5-100 microM for histamine determination. The FIA response was very reproducible from film to film, and the response variability was below 7% at the actual detection limits.  相似文献   

5.
Uniform and vertically aligned nanocone and nanopillar arrays were successfully constructed on heavily boron-doped nanocrysatlline diamond films by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas. The electrochemical properties of the nanostructured boron-doped diamond films were investigated by cyclic voltammetry using 1 mM [Fe(CN)6](3-/4-) as redox couple. Compared to the planar boron-doped nanocrystalline diamond film electrode, the surface nanostructuring of boron-doped diamond film electrodes demonstrate enhanced sensitivity due to their enlarged electro-active surface areas. The results indicated that boron-doped diamond nanocones and nanopillars are promising electrode materials which benefit to improve the efficiency, sensitivity and reproducibility of biomedical and chemical sensors.  相似文献   

6.
Iridium-modified, boron-doped diamond electrodes fabricated by an ion implantation method have been developed for electrochemical detection of arsenite (As(III)). Ir+ ions were implanted with an energy of 800 keV and a dose of 10(15) ion cm(-2). An annealing treatment at 850 degrees C for 45 min in H2 plasma (80 Torr) was required to rearrange metastable diamond produced by an implantation process. Characterization was investigated by SEM, AFM, Raman, and X-ray photoelectron spectroscopy. Cyclic voltammetry and flow injection analysis with amperometric detection were used to study the electrochemical reaction. The electrodes exhibited high catalytic activity toward As(III) oxidation with the detection limit (S/N = 3), sensitivity, and linearity of 20 nM (1.5 ppb), 93 nA microM(-1) cm(-2), and 0.999, respectively. The precision for 10 replicate determinations of 50 microM As(III) was 4.56% relative standard deviation. The advantageous properties of the electrodes were its inherent stability with a very low background current. The electrode was applicable for analysis of spiked arsenic in tap water containing a significant amount of various ion elements. The results indicate that the metal-implanted method could be promising for controlling the electrochemical properties of diamond electrodes.  相似文献   

7.
Highly boron-doped diamond microelectrodes were employed in an end-column electrochemical detector for capillary electrophoresis (CE). The diamond microline electrodes were fabricated from conducting diamond thin films (exposed surface area, 300 x 50 microm), and their analytical performance as CE detectors was evaluated in a laboratory-made CE installation. The CE-ED system exhibited high separation efficiency for the detection of several catecholamines, including dopamine (DA), norepinephrine (NE), and epinephrine (E), with excellent analytical performance, for example, 155,000 theoretical plates for DA. The diamond-based electrochemical detection system also displayed low detection limits (approximately 20 nM for E at S/N = 3) and a highly reproducible current response with 10 repetitive injections of mixed analytes containing DA, NE, and E (each 50 microM), with relative standard deviations (RSD) of approximately 5%. The performance of the diamond detector in CE was also evaluated in the detection of chlorinated phenols (CP). When compared to the carbon fiber microelectrode, the diamond electrode exhibited lower detection limits in an end-column CE detection resulting from very low noise levels and highly reproducible analyses without electrode polishing due to analyte fouling, which makes it possible to perform easier and more stable CE analysis.  相似文献   

8.
In this paper, we report the investigation of the electrochemical properties of nano-structured diamond thin-film electrodes on porous silicon (PSi) synthesized by microwave plasma chemical vapor deposition (MPCVD). For the application, boron-doped and undoped diamond thin film has been performed and fabricated into an electrode device, and its microstructure, electrical and chemical properties have been studied. In order to enlarge the surface area of diamond electrodes, a negative bias was applied to the MPCVD process to deposit diamond thin film in a nano-structured form, so that its surface remained rough and nano-fine structured. Diamond thin films were analyzed by Raman spectroscopy and SEM. The morphology of boron-doped diamond thin films on PSi reveals nano-rods in the shape of diamond crystallites. Their electrochemical properties were evaluated by performing cyclic voltammetry (CV) measurement in inorganic K4[Fe(CN)6] in a K2HPO4 buffer solution. Boron-doped diamond thin film on PSi has demonstrated good electrochemical properties, with a larger redoxidation current of CV, due to its rough surface, which provides a more active electrochemical interface.  相似文献   

9.
Song Y  Swain GM 《Analytical chemistry》2007,79(6):2412-2420
We demonstrate that a Au-coated, boron-doped, diamond thin-film electrode provides a sensitive, reproducible, and stable response for total inorganic arsenic (As(III) and As(V)) using differential pulse anodic stripping voltammetry (DPASV). As is preconcentrated with Au on the diamond surface during the deposition step and detected oxidatively during the stripping step. Au deposition was uniform over the electrode surface with a nominal particle size of 23 +/- 5 nm and a particle density of 109 cm-2. The electrode and method were used to measure the As(III) concentration in standard and river water samples. The detection figures of merit were compared with those obtained using conventional Au-coated glassy carbon and Au foil electrodes. The method was also used to determine the As(V) concentration in standard solutions after first being chemically reduced to As(III) with Na2SO3, followed by the normal DPASV determination of As(III). Sharp and symmetric stripping peaks were generally observed for the Au-coated diamond electrode. LODs were 0.005 ppb (S/N = 3) for As(III) and 0.08 ppb (S/N = 3) for As(V) in standard solutions. An As(III) concentration of 0.6 ppb was found in local river water. The relative standard deviation of the As stripping peak current for river water was 1.5% for 10 consecutive measurements and was less than 9.1% over a 10-h period. Excellent electrode response stability was observed even in the presence of up to 5 ppm of added humic acid. In summary, the Au-coated diamond electrode exhibited better performance for total inorganic As analysis than did Au-coated glassy carbon or Au foil electrodes. Clearly, the substrate on which the Au is supported influences the detection figures of merit.  相似文献   

10.
Electrochemical oxidation of 2'-deoxyguanosine has been performed on boron-doped diamond (BDD) electrodes, resulting in a strong adsorption of the formed oxidized products onto the BDD surface. The adsorption behavior has been investigated by studying the electrochemical behavior of a redox probe ([IrCl6]3-) using cyclic voltammetry. The most probable situations are the formation of (A) an insulating adsorbed film resulting in a partially blocked electrode behavior, (B) a porous film, or (C) an overall conductive film. Different parameters such as the standard rate constant, the charge-transfer coefficient, the electrode/adsorbed products/solution interface resistance, and the formal potential of the redox couple were determined. Through comparison of theoretical current-potential curves obtained by analytical calculations with experimental cyclic voltammograms, we found that the oxidized products of 2'-deoxyguanosine form a continuous conductive film on BDD.  相似文献   

11.
Conductive boron-doped diamond thin-film electrodes were used for the electrochemical detection of selected N-methylcarbamate pesticides (carbaryl, carbofuran, methyl 2-benzimidazolecarbamate, bendiocarb) after liquid chromatographic separation. Two kinds of detection methods were adopted in this study. In the first method, a direct detection of underivatized pesticides was carried out at an operating potential of 1.45 V versus Ag/AgCl, which resulted in the detection limits of 5-20 ng/mL (or 5-20 ppb) with S/N = 2 due to the low background current and wide potential window of the diamond electrode. In the second method, the detection limits were improved by subjecting the pesticide samples to alkaline hydrolysis in a separate step prior to injection. The phenolic derivatives obtained by alkaline hydrolysis oxidize at a relatively lower potential (0.9 V vs Ag/AgCl), which increases the sensitivity drastically. The advantage of the diamond electrode for the detection of phenolic derivatives is that it offers excellent stability in comparison to other electrodes. This method gives the detection limits of 0.6-1 ng/mL (or 0.6-1 ppb), which are well below the maximum residue levels allowed for carbaryl, carbofuran, and bendiocarb. While the lowest detection limits (LOD) obtained by the direct detection of pesticides are comparable to the those reported by the well-established HPLC-fluorescence, the LODs of the alkaline hydrolysis method are found to be even lower than the reported limits. On-line reactivation of the diamond electrode surface was shown to be possible by an anodic treatment of the electrode at approximately 3 V for 30 min in case of electrode fouling, which may occur after a prolonged use. Such a treatment damages the glassy carbon (GC) and metal electrodes, while the diamond electrode remains stable. These results suggest that the diamond electrode is superior to the other previously used electrodes such as GC and Kelgraf type for highly sensitive and stable detection of carbamate pesticides.  相似文献   

12.
Excessive consumption of electrical energy has hampered the widespread application of electrochemical technology for degradation of various contaminants. In this paper, a Fe-based metallic glass (MG) was demonstrated as a new type of electrocatalyst to effectively and economically degrade an azo dye. In comparison to other typical electrodes, Fe-based MG electrodes exhibit a minimized degradation time, and the specific energy is 4–6 orders of magnitude lower than that of dimensionally stable anode (DSA), metal-like boron-doped diamond (BDD) and other electrodes. As sacrificial electrode materials, Fe-based MGs have less specific electrode mass consumption than iron electrodes. The use of Fe-based MGs will promote the practical application of electrochemical technology and the use of MGs as functional materials.  相似文献   

13.
Cyclic voltammetry (CV) has been used to investigate the electrochemical behavior of a glutathione (GSH) self assembled monolayer on modified gold electrodes (Bio-SAM). The GSH monolayer exhibits an influence on electrode surface activity. Electrochemically immobilized dsDNA onto a Cyt c/GSH-SAM/Au electrode, which is useful for the fabrication of a nanobiosensing device. The immobilized Cyt c followed by dsDNA immobilized films maintained its surface activity and finally dsDNA/Cyt c/GSH-SAM/Au electrode, targeted for the detection of toxicants. The films were characterized by CV, DPV, and AFM. The differential pulse voltammetry (DPV) technique was applied to detect three kinds of common toxins, 2-aminoanthracene (2-AA), 3-bromobenzanthrone (3-BBA) and bisphenol A (BPhA). The electrochemical signals showed good inverse relationship with the increase of concentrations of toxicants. Our proposed system based on electrochemical method with nanoscale film technology can be applied at highly sensitive biosensor for detecting various toxic chemicals.  相似文献   

14.
In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are suitable for probing, manipulating, sculpting, and sensing at single digit nanoscale.  相似文献   

15.
Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes   总被引:2,自引:0,他引:2  
Conductive boron-doped chemical vapor-deposited diamond thin films, already known to have superior properties for general electroanalysis, including low background current and a wide potential window, are here shown to have additional advantages with respect to electrochemical oxidation of nicotinamide adenine dinucleotide (NADH), including high resistance to deactivation and insensitivity to dissolved oxygen. Cyclic voltammetry, amperometry, and the rotating disk electrode technique were used to study the reaction in neutral pH solution. Highly reproducible cyclic voltammograms for NADH oxidation were obtained at as-deposited diamond electrodes. The response was stable over several months of storage in ambient air, in contrast to glassy carbon electrodes, which deactivated within 1 h. The diamond electrode exhibited very high sensitivity for NADH, with an amperometric detection limit of 10 nM (S/N = 7). The response remained stable, even in the very low concentration range, for several months. In addition, interference effects due to ascorbic acid were minimal when the concentrations of NADH and ascorbic acid were comparable. An NADH-mediated dehydrogenese-based ethanol biosensor incorporating an unmodified diamond electrode is demonstrated. The present results indicate that diamond is a useful electrode material for the analytical detection of NADH, making it attractive for use in sensors based on enzyme-catalyzed reactions involving NADH as a cofactor.  相似文献   

16.
Heavily doped diamond films are quite actively studied for their promising applications in industrial as well as in fundamental electrochemistry (both for physicochemical studies and in the field of electroanalysis), because of their very high stability toward chemical and electrochemical oxidative attacks. Fluorinated diamond electrodes exhibit an exceptionally lower electrocatalytic activity toward reactions involving adsorbed intermediates, as a result of the F-termination of the surface dangling bonds. This feature allows the investigation of the widest range of potentials for an electrode material in aqueous solution, being limited only by the formation of free hydrogen [E degrees (H*/H2) = -2.3 V(SHE)] and hydroxyl [E degrees (*OH,H+/H2O) = 2.74 V(SHE)] radicals, at the two boundaries of the approximately 5-V polarization window.  相似文献   

17.
Anodically pretreated diamond electrodes have been used for the detection of chlorophenols (CPs) in environmental water samples after high-performance liquid chromatographic (HPLC) separation. The anodization of as-deposited boron-doped polycrystalline diamond thin-film electrodes has enabled the stable determination of phenols over a wide concentration range. Prior to the HPLC analysis, a comparative study with ordinary glassy carbon, as-deposited diamond, and anodized diamond was made to examine the oxidative behavior of phenols by cyclic voltammety and flow injection analysis with amperometric detection. At anodized diamond electrodes, reproducible, well-defined cyclic voltammograms were obtained even at high CP concentration (5 mM), due to a low proclivity for adsorption of the oxidation products on the surface. In addition, after prolonged use, the partially deactivated diamond could be reactivated on line by applying a highly anodic potential (2.64 Vvs SCE) for 4 min, which enabled the destruction of the electrodeposited polymer deposits. Hydroxyl radicals produced by the high applied potential, in which oxygen evolution occurs, are believed to be responsible for the oxidation of the passivating layer on the surface. When coupled with flow injection analysis (FIA), anodized diamond exhibited excellent stability, with a response variability of 2.3% (n = 100), for the oxidation of a high concentration (5 mM) of chlorophenol. In contrast, glassy carbon exhibited a response variability of 39.1%. After 100 injections, the relative peak intensity, for diamond decreased by 10%, while a drastic decrease of 70% was observed for glassy carbon. The detection limit obtained in the FIA mode for 2,4-dichlorophenol was found to be 20 nM (S/N = 3), with a linear dynamic range up to 100 microM. By coupling with the column-switching technique, which enabled on-line preconcentration (50 times), the detection limit was lowered to 0.4 nM (S/N = 3). By use of this technique, anodized diamond electrodes were demonstrated for the analysis of CPs in drainwater that was condensed from the flue gas of waste incinerators.  相似文献   

18.
The electrochemical properties of two commercial (Condias, Sumitomo) boron-doped diamond thin-film electrodes were compared with those of two types of boron-doped diamond thin film deposited in our laboratory (microcrystalline, nanocrystalline). Scanning electron microscopy and Raman spectroscopy were used to characterize the electrode morphology and microstructure, respectively. Cyclic voltammetry was used to study the electrochemical response, with five different redox systems serving as probes (Fe(CN)(6)(3)(-)(/4)(-), Ru(NH(3))(6)(3+/)(2+), IrCl(6)(2)(-)(/3)(-), 4-methylcatechol, Fe(3+/2+)). The response for the different systems was quite reproducibile from electrode type to type and from film to film for electrodes of the same type. For all five redox systems, the forward reaction peak current varied linearly with the scan rate(1/2) (nu), indicative of electrode reaction kinetics controlled by mass transport (semi-infinite linear diffusion) of the reactant. Apparent heterogeneous electron-transfer rate constants, k degrees (app), for all five redox systems were determined from deltaE(p)-nu experimental data, according to the method described by Nicholson (Nicholson, R. S. Anal. Chem. 1965, 37, 1351.). The rate constants were also verified through digital simulation (DigiSim 3.03) of the voltammetric i-E curves at different scan rates. Good fits between the experimental and simulated voltammograms were found for scan rates up to 50 V/s. k degrees (app) values of 0.05-0.5 cm/s were observed for Fe(CN)(6)(3)(-)(/4)(-), Ru(NH(3))(6)(3+/2+), and IrCl(6)(2)(-)(/3)(-) without any extensive electrode pretreatment (e.g., polishing). Lower k degrees (app) values of 10(-)(4)-10(-)(6) cm/s were found for 4-methylcatechol and Fe(3+/2+). The voltammetric responses for Fe(CN)(6)(3)(-)(/4)(-) and Ru(NH(3))(6)(3+/2+) were also examined at all four electrode types at two different solution pH (1.90, 7.35). Since the hydrogen-terminated diamond surfaces contain few, if any, ionizable carbon-oxygen functionalities (e.g., carboxylic acid, pK(a) approximately 4.5), the deltaE(p), i(p)(ox), and i(p)(red) values for the two systems were, for the most part, unaffected by the solution pH. This is in contrast to the typical behavior of oxygenated, sp(2) carbon electrodes, such as glassy carbon.  相似文献   

19.
掺硼金刚石薄膜的电化学性能   总被引:3,自引:1,他引:2  
利用循环伏安法,通过对比掺硼金刚石薄膜电极和铂/金刚石电极分别作为工作电极时的循环伏安曲线,分析了两种电极表现出的电化学性能差别,并利用能级理论进行了机理探讨。结果表明掺硼金刚石薄膜电极具有宽的电化学窗口(宽度约为3V)、良好的化学稳定性和极低的背景电流(接近0),是一种较有潜力的电化学电极材料。  相似文献   

20.
The attractive behavior and advantages of a diamond electrode detector for a micromachined capillary electrophoresis (CE) system are discussed. A chemically vapor-deposited boron-doped diamond (BDD) film band (0.3 x 6.0 mm) electrode is used for end-column amperomettic detection. The favorable performance of the diamond electrode microchip detector is indicated from comparison to a commonly used thick-film carbon detector. The diamond electrode offers enhanced sensitivity, lower noise levels, and sharper peaks for several groups of important anaytes (nitroaromatic explosives, organophosphate nerve agents, phenols). The favorable signal-to-background characteristics of the BDD-based CE detector are coupled with a greatly improved resistance to surface fouling and greater isolation from high separation voltages. The enhanced stability is indicated from a RSD of 0.8% for 60 repetitive measurements of 5 ppm 2,4,6-trinitrotoluene (vs RSD of 10.8% at the thick-film carbon electrode). A highly linear response is obtained for the explosives 1,3-dinitrobenzene and 2,4-dinitrotoluene over the 200-1,400 ppb range, with detection limits of 70 and 110 ppb, respectively. Factors influencing the performance of the BDD detector are assessed and optimized. The attractive properties of BDD make it very promising material for electrochemical detection in CE microchip systems and other micromachined flow analyzers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号