首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent emitters have regained intensive attention in organic light emitting diode (OLED) community owing to the breakthrough of the device efficiency and/or new emitting mechanism. This provides a good chance to develop new near‐infrared (NIR) fluorescent emitter and high‐efficiency device. In this work, a D‐π‐A‐π‐D type compound with naphthothiadiazole as acceptor, namely, 4,4′‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)bis(N,N ‐diphenylaniline) (NZ2TPA), is designed and synthesized. The photophysical study and density functional theory analysis reveal that the emission of the compound has obvious hybridized local and charge‐transfer (HLCT) state feature. In addition, the compound shows aggregation‐induced emission (AIE) characteristic. Attributed to its HLCT mechanism and AIE characteristic, NZ2TPA acquires an unprecedentedly high photoluminescent quantum yield of 60% in the neat film, which is the highest among the reported organic small‐molecule NIR emitters and even exceeds most phosphorescent NIR materials. The nondoped devices based on NZ2TPA exhibit excellent performance, achieving a maximum external quantum efficiency (EQE) of 3.9% with the emission peak at 696 nm and a high luminance of 6330 cd m?2, which are among the highest in the reported nondoped NIR fluorescent OLEDs. Moreover, the device remains a high EQE of 2.8% at high brightness of 1000 cd m?2, with very low efficiency roll‐off.  相似文献   

2.
Thermally activated delayed fluorescence (TADF) materials, which enable the full harvesting of singlet and triplet excited states for light emission, are expected as the third‐generation emitters for organic light‐emitting diodes (OLEDs), superseding the conventional fluorescence and phosphorescence materials. High photoluminescence quantum yield (ΦPL), narrow‐band emission (or high color purity), and short delayed fluorescence lifetime are all strongly desired for practical applications. However, to date, no rational design strategy of TADF emitters is established to fulfill these requirements. Here, an epoch‐making design strategy is proposed for producing high‐performance TADF emitters that concurrently exhibiting high ΦPL values close to 100%, narrow emission bandwidths, and short emission lifetimes of ≈1 µs, with a fast reverse intersystem crossing rate of over 106 s?1. A new family of TADF emitters based on dibenzoheteraborins is introduced, which enable both doped and non‐doped TADF‐OLEDs to achieve markedly high external electroluminescence quantum efficiencies, exceeding 20%, and negligible efficiency roll‐offs at a practical high luminance. Systematic photophysical and theoretical investigations and device evaluations for these dibenzoheteraborin‐based TADF emitters are reported here.  相似文献   

3.
The development of efficient red thermally activated delayed fluorescence (TADF) emitters with an emission wavelength beyond 600 nm remains a great challenge for organic light‐emitting diodes (OLEDs). Herein, two pairs of isomers are designed and synthesized by attaching electron‐donor 9,9‐diphenyl‐9,10‐dihydroacridine (DPAC) moiety to the different positions of two kinds of highly rigid planar acceptor cores (PDCN and PPDCN). Their TADF efficiencies and emission maxima (599–726 nm) are regulated by molecular isomer manipulation. Interestingly, the photoluminescence quantum yields (ΦPLs) of trans‐isomers T‐DA‐1 and T‐DA‐2 (78% and 89%) are remarkably higher than those of their corresponding cis‐isomers C‐DA‐1 and C‐DA‐2 (12% and 14%). Significantly increased ΦPL values can be explained by single crystal structures and theoretical simulation. As a result, a deep red TADF‐OLED based on T‐DA‐2 displays a maximum external quantum efficiency (EQE) of 26.26% at 640 nm. Notably, at a brightness of 100 cd m?2, the EQE value of T‐DA‐2‐based device still remains at an extremely high level of 23.95%, representing the highest value for reported red TADF‐OLEDs at the same brightness. These results provide a reasonable pathway to optimize optoelectronic properties and thereby construct efficient red TADF emitters through rational isomer engineering.  相似文献   

4.
Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light‐emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll‐off as luminance increases. To address this issue, in this study, a new tailor‐made luminogen (dibenzothiophene‐benzoyl‐9,9‐dimethyl‐9,10‐dihydroacridine, DBT‐BZ‐DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation‐induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT‐BZ‐DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A?1 and 17.9%, respectively, but the efficiency roll‐off is large at high luminance. High‐performance nondoped OLED is also achieved with neat film of DBT‐BZ‐DMAC, providing excellent maxima EL efficiencies of 43.3 cd A?1 and 14.2%, negligible current efficiency roll‐off of 0.46%, and external quantum efficiency roll‐off approaching null from peak values to those at 1000 cd m?2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll‐off reported so far.  相似文献   

5.
Significant effort has been made to develop novel material systems to improve the efficiency of near‐infrared organic light‐emitting diodes (NIR OLEDs). Of those, fluorescent chromophores are mostly studied because of their advantages in cost and tunability. However, it is still rare for fluorescent NIR emitters to present good color purities in the NIR range and to have high external quantum efficiency (EQE). Here, a wedge‐shaped D‐π‐A‐π‐D emitter APDC‐DTPA with thermally activated delayed fluorescence property and a small single‐triplet splitting (ΔEst) of 0.14 eV is presented. The non‐doped NIR device exhibits excellent performance with a maximum EQE of 2.19% and a peak wavelength of 777 nm. Remarkably, when 10 wt% of APDC‐DTPA is doped in 1,3,5‐tris(1‐phenyl‐1H‐benzimidazol‐2‐yl)benzene host, an extremely high EQE of 10.19% with an emission peak of 693 nm is achieved. All these values represent the best result for NIR OLEDs based on a pure organic fluorescent emitter with similar device structure and color gamut.  相似文献   

6.
Increasing exciton utilization and reducing exciton annihilation are crucial to achieve high performance of organic light‐emitting diodes (OLEDs), which greatly depend on molecular engineering of emitters and hosts. A novel luminogen (SBF‐BP‐DMAC) is synthesized and characterized. Its crystal and electronic structures, thermal stability, electrochemical behavior, carrier transport, photoluminescence, and electroluminescence are investigated. SBF‐BP‐DMAC exhibits enhanced photoluminescence and promotes delayed fluorescence in solid state and bipolar carrier transport ability, and thus holds multifunctionality of emitter and host for OLEDs. Using SBF‐BP‐DMAC as an emitter, the nondoped OLEDs exhibit maximum electroluminescence (EL) efficiencies of 67.2 cd A?1, 65.9 lm W?1, and 20.1%, and the doped OLEDs provide maximum EL efficiencies of 79.1 cd A?1, 70.7 lm W?1, and 24.5%. A representative orange phosphor, Ir(tptpy)2acac, is doped into SBF‐BP‐DMAC for OLED fabrication, giving rise to superior EL efficiencies of 88.0 cd A?1, 108.0 lm W?1, and 26.8% for orange phosphorescent OLEDs, and forward‐viewing EL efficiencies of 69.3 cd A?1, 45.8 lm W?1, and 21.0% for two‐color hybrid warm‐white OLEDs. All of these OLEDs can retain high EL efficiencies at high luminance, with very small efficiency roll‐offs. The outstanding EL performance demonstrates the great potentials of SBF‐BP‐DMAC in practical display and lighting devices.  相似文献   

7.
The simultaneous realization of high quantum yield and exciton utilizing efficiency (ηr) is still a formidable challenge in near‐infrared (NIR) fluorescent organic light‐emitting diodes (FOLEDs). Here, to achieve a high quantum yield, a novel NIR dye, 4,9‐bis(4‐(diphenylamino)phenyl)‐naphtho[2,3‐c ][1,2,5]selenadiazole, is designed and synthesized with a large highest occupied molecular orbital/lowest unoccupied molecular orbital overlap and an aggregation‐induced emission property, which demonstrates a high photoluminescence quantum yield of 27% at 743 nm in toluene and 29% at 723 nm in a blend film. For a high ηr, an orange‐emitting thermally activated delayed fluorescent material, 1,2‐bis(9,9‐dimethyl‐9,10‐dihydroacridine)‐4,5‐dicyanobenzene, is chosen as the sensitizing host to harvest triplet excitons in devices. The optimized devices achieve a good ηr of 45.7% and a high external quantum efficiency up to 2.65% at 730 nm, with a very small efficiency roll‐off of 2.41% at 200 mA cm?2, which are among the most efficient values for NIR‐FOLEDs over 700 nm. The effective utilization of triplet excitons via the thermally activated delayed fluorescence‐sensitizing host will pave a way to realize high‐efficiency NIR‐FOLEDs with small efficiency roll‐off.  相似文献   

8.
The development of efficient near‐infrared (NIR) emitting material is of current focus. Donor–acceptor (D–A) architecture has been proved to be an effective strategy to obtain narrow energy gap. Herein, a D–A‐type NIR fluorescent compound 2,3‐bis(4′‐(diphenylamino)‐[1,1′‐biphenyl]‐4‐yl)fumaronitrile (TPATCN) is synthesized and fully characterized. As revealed by theoretical calculations and photophysical experiments, TPATCN exerts the advantages of the relatively large dipole moment of the charge transfer state and a certain degree of orbital overlap of the local excited state. A highly mixed or hybrid local and charge transfer excited state might occur to simultaneously achieve both a large fraction of singlet formation and a high quantum efficiency in D–A system. TPATCN exhibits strong NIR fluorescence with the corresponding thin film quantum efficiency of 33% and the crystal efficiency of 72%. Remarkably, the external quantum efficiency of nondoped NIR organic light‐emitting diode (OLED) reaches 2.58% and remains fairly constant over a range of 100–300 mA cm?2, which is among the best results for NIR OLEDs reported so far.  相似文献   

9.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

10.
Near‐infrared organic light‐emitting diodes (NIR OLEDs) enable many unique applications ranging from night‐vision displays and photodynamic therapies. However, the development of efficient NIR OLEDs with a low efficiency roll‐off is still challenging. Here, a series of new heteroleptic Pt(II) complexes ( 1 – 4 ) flanked by both pyridyl pyrimidinate and functional azolate chelates are synthesized. The reduced ππ* energy gap of the pyridyl pyrimidinate chelate, and strong intermolecular interaction and high crystallinity in vacuum‐deposited thin films engender strong intermolecular charge transfer transition including metal–metal‐to‐ligand charge transfer; thereby, exhibiting efficient photoluminescence within 776–832 nm and short radiative lifetimes of 0.52–0.79 µs. Consequently, nondoped NIR‐emitting OLEDs based on these Pt(II) complexes are fabricated, to which Pt(II) complexes 2 and 4 give record high maximum external quantum efficiency of 10.61% at 794 nm and 9.58% at 803 nm, respectively. Moreover, low efficiency roll‐off is also observed, among which the device efficiencies of 2 and 4 are at least four times higher than that of the best NIR‐emitting OLEDs recorded at current density of 100 mA cm?2.  相似文献   

11.
The development of red thermally activated delayed fluorescence (TADF) emitters having excellent optoelectronic properties and satisfactory electroluminescence efficiency is full of challenges due to strict molecular design principles. Two red TADF molecules, 3‐(9,9‐dimethylacridin‐10(9H)‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile and 3‐(2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluoren]‐10‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile, are developed by adopting a donor–acceptor molecular architecture bearing an electron‐accepting acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile (ANQDC) moiety and a 9,9‐dimethyl‐9,10‐dihydroacridine or 2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluorene] electron donor. The combined effects of rigid and planar D/A moieties and highly steric hindrance between D and A groups endow both molecules with high rigidity to suppress nonradiative decay processes, resulting in high photoluminescence quantum efficiencies (ΦPLs) of up to 95%. Attributed to the linear and planar acceptor motif and rod‐like molecular configuration, both emitters achieve high horizontal ratios of emitting dipole orientation of ≈80%. The organic light‐emitting diodes (OLEDs) based on both emitters exhibit red emissions peaking at ≈615 nm and successfully afford ultrahigh electroluminescence performance with an external quantum efficiency of nearly 28% and a power efficiency of above 50 lm W?1, on par with the state‐of‐the‐art device efficiency for red TADF OLEDs. This presents a feasible design strategy for excellent TADF emitters simultaneously possessing high ΦPLs and horizontally aligned emitting dipoles.  相似文献   

12.
Cu2+‐based metal‐organic framework (Cu? TCA ) (H3 TCA = tricarboxytriphenyl amine) having triphenylamine emitters was assembled and structurally characterized. Cu? TCA features a three‐dimensional porous structure consolidated by the well‐established Cu2(O2CR)4 paddlewheel units with volume of the cavities approximately 4000 nm3. Having paramagnetic Cu2+ ions to quench the luminescence of triphenylamine, Cu? TCA only exhibited very weak emission at 430 nm; upon the addition of NO up to 0.1 mM , the luminescence was recovered directly and provided about 700‐fold fluorescent enhancement. The luminescence detection exhibited high selectivity – other reactive species present in biological systems, including H2O2, NO3?, NO2?, ONOO?, ClO? and 1O2, did not interfere with the NO detection. The brightness of the emission of Cu? TCA also led to its successful application in the biological imaging of NO in living cells. As a comparison, lanthanide metal‐organic framework Eu? TCA having triphenylamine emitters and characteristic europium emitters was also assembled. Eu? TCA exhibited ratiometric fluorescent responses towards NO with the europium luminescence maintained as the internal standard and the triphenylamine emission exhibited more than 1000‐fold enhancement.  相似文献   

13.
Eight random and alternating copolymers PF‐DTBTA derived from 2,7‐fluorene and 4,7‐dithienylbenzotriazole (DTBTA) were synthesized. Thin solid films of the energy‐transfer copolymers possess high absolute photoluminescence (PL) quantum yields (ΦPL) between 60?72%. Inserting PVK layer between anode and emissive layer could show higher electroluminescence (EL) performances due to PVK‐enhanced hole injection. Random copolymers PF‐DTBTA1?15, with DTBTA molar contents from 1% to 15%, displayed yellow EL spectra with high external quantum efficiency (EQEmax) up to 5.78%. PF‐DTBTA50, the alternating copolymer, showed an orange EL with EQEmax of 3.3%. The good ΦPL and EQEmax of the PF‐DTBTA50 with very high DTBTA content indicate that DTBTA is a high efficiency chromophore with very low concentration quenching effects in the solid state PL and EL processes. PF‐DTBTA0.03?0.1 could emit white EL due to partial energy transfer from fluorene segments to DTBTA units. Moreover, white EL devices, with forward‐viewing maximum luminous efficiency up to 11 cd/A and stable white EL spectra (CIE coordinates of (0.33, 0.43)) in high current range from 5 mA to 60 mA, could be realized from the non‐doped polymer with simple binary structure. Our results suggest that DTBTA has big potential to construct high performanced EL polymers or oligomers.  相似文献   

14.
Aggregation‐induced emission (AIE) materials are highly attractive because of their excellent properties of high efficiency emission in nondoped organic light‐emitting diodes (OLEDs). Therefore, a deep understanding of the working mechanisms, further improving the electroluminescence (EL) efficiency of the resulting AIE‐based OLEDs, is necessary. Herein, the conversion process from higher energy triplet state (T2) to the lowest singlet state (SS1) is found in OLEDs based on a blue AIE material, 4′‐(4‐(diphenylamino)phenyl)‐5′‐phenyl‐[1,1′:2′,1′′‐terphenyl]‐4‐carbonitrile (TPB‐AC), obviously relating to the device efficiency, by magneto‐EL (MEL) measurements. A special line shape with rise at low field and reduction at high field is observed. The phenomenon is further clarified by theoretical calculations, temperature‐dependent MELs, and transient photoluminescence emission properties. On the basis of the T2‐S1 conversion process, the EL performances of the blue OLEDs based on TPB‐AC are further enhanced by introducing a phosphorescence doping emitter in the emitting layer, which effectively regulates the excitons on TPB‐AC molecules. The maximum external quantum efficiency (EQE) reaches 7.93% and the EQE keeps 7.57% at the luminance of 1000 cd m?2. This work establishes a physical insight for designing high‐performance AIE materials and devices in the future.  相似文献   

15.
Aiming for highly efficient blue electroluminescence, we have designed and synthesized a novel class of tetraphenylimidazole‐ based excited‐state intramolecular proton‐transfer (ESIPT) molecules with covalently linked charge‐transporting functional groups (carbazole‐ and oxadiazole‐functionalized hydroxyl‐substituted tetraphenylimidazole (HPI), i.e., HPI‐Cbz and HPI‐Oxd, respectively). High Tg (ca. 130 °C) amorphous films of HPI‐Cbz and HPI‐Oxd showed intense and ideal blue‐light emission (λmax = 462 and 468 nm, ΦPL = 0.44 and 0.38) with a large Stokes shift of over 160 nm and a narrow full width at half‐maximum of less than 65 nm. Organic light‐emitting devices using HPI‐Cbz and HPI‐Oxd as the emitting layer generated an efficient blue electroluminescence (EL) emission peaking at around 460 nm with excellent CIE coordinates of (x, y) = (0.15, 0.11). A maximum external quantum efficiency of 2.94%, and a maximum brightness of 1 229 cd m−2 at 100 mA cm−2, as well as a low turn‐on voltage of 4.8 V were achieved in this work.  相似文献   

16.
Novel deep‐blue‐light‐emitting diphenylamino and triphenylamino end‐capped oligofluorenes were synthesized by double palladium‐catalyzed Suzuki cross‐coupling of dibromo‐oligofluorene with the corresponding boronic acid as a key step. These oligofluorenes exhibit deep‐blue emission (λemmax = 429–432 nm), low and reversible electrochemical oxidation (highest occupied molecular orbital = 5.15–5.20 eV), high fluorescence quantum yield (ΦFL = 0.61–0.93), and good thermal properties (glass‐transition temperature, Tg = 99–195 °C and decomposition temperature, Tdec > 450 °C). Remarkably, saturated deep‐blue organic light‐emitting diodes, made from these oligofluorenes as dopant emitters, have been achieved with excellent performance and maximum efficiencies up to 2.9 cd A–1 at 2 mA cm–2 (external quantum efficiency of 4.1 %) and with Commission Internationale de l'Éclairage (x,y) coordinates of (0.152,0.08), which is very close to the National Television System Committee standard blue.  相似文献   

17.
Two phosphorescent iridium complexes with bipolar transporting ability, namely FPPCA (500 nm) and BZQPG (600 nm), are synthesized and employed as an ideal host‐guest system for phosphorescent organic light emitting diodes (PHOLEDs).The devices give very high‐efficiency orange‐red emission from BZQPG with maximum external quantum efficiency (EQE or ηext) of >27% and maximum power efficiency (PE or ηp) of >75 lm/W, and maintain high levels of 26% and 55 lm/W, 25% and 40 lm/W at high luminance of 1000 and 5000 cd m?2, respectively, within a range of 8–15 wt% of BZQPG. The realization of such high and stable EL performance results from the coexistence of two parallel paths: i) effective energy transfer from host (FPPCA) to guest (BZQPG) and ii) direct exciton formation on the BZQPG emitter, which can alternately dominate the electrophosphorescent emission. This all‐phosphor doping system removes the charge‐injection barrier from the charge‐transport process to the emissive layer (EML) due to the inherent narrow Eg of both phosphors. Therefore, this ideal host–guest system represents a new design to produce PHOLEDs with high efficiency and low efficiency roll‐off using a simple device configuration.  相似文献   

18.
Highly efficient lepidine‐based phosphorescent iridium(III) complexes with pentane‐2,4‐dione or triazolpyridine as ancillary ligands have been designed and prepared by a newly developed facile synthetic route. Fluorine atoms and trifluoromethyl groups have been introduced into the different positions of ligand, and their influence on the photophysical properties of complexes has been investigated in detail. All the triazolpyridine‐based complexes display the blueshifted dual‐peak emission compared to the pentane‐2,4‐dione‐based ones with a broad single‐peak emission. The complexes show emission with broad full width at half maximum (FWHM) over 100 nm, and the emissions are ranges from greenish–yellow to orange region with the absolute quantum efficiency (ΦPL) of 0.21–0.92 in solution, i.e., ΦPL = 0.92 ( 18 ), which is the highest value among the reported neutral yellow iridium(III) complexes. Furthermore, high‐performance yellow and complementary‐color‐based white organic light‐emitting diodes (OLEDs) have been fabricated. The FWHMs of the yellow, greenish–yellow OLEDs are in the range of 94–102 nm, which are among the highest values of the reported yellow or greenish–yellow‐emitting devices without excimer emission. The maximum external quantum efficiency of monochrome OLEDs can reach 24.1%, which is also the highest value among the reported yellow or greenish–yellow devices. The color rendering indexes of blue and complementary yellow‐based white OLED is as high as 78.  相似文献   

19.
Organic semiconductor nanowires have inherent advantages, such as amenability to low‐cost, low‐temperature processing, and inherent four‐level energy systems, which will significantly contribute to the organic solid‐state lasers (OSSLs) and miniaturized laser devices. However, the realization of near‐infrared (NIR) organic nanowire lasers is always a big challenge due to the difficultly in fabrication of organic nanowires with diameters of ≈100 nm and material issues such as low photoluminescence quantum efficiency in the red‐NIR region. What is more, the achievement of wavelength‐tunable OSSLs has also encountered enormous challenge. This study first demonstrates the 720 nm NIR lasing with a low lasing threshold of ≈1.4 µJ cm?2 from the organic single‐crystalline nanowires, which are self‐assembled from small organic molecules of (E )‐3‐(4‐(dimethylamino)‐2‐methoxyphenyl)‐1‐(1‐hydroxynaphthalen‐2‐yl)prop‐2‐en‐1‐one through a facile solution‐phase growth method. Notably, these individual nanowires' Fabry–Pérot cavity can alternatively provide the red‐NIR lasing action at 660 or 720 nm from the 0–1 or 0–2 radiative transition channels, and the single (660 or 720 nm)/dual‐wavelength (660 and 720 nm) laser action can be achieved by modulating the length of these organic nanowires due to the intrinsic self‐absorption. These easily‐fabricated organic nanowires are natural laser sources, which offer considerable promise for coherent light devices integrated on the optics microchip.  相似文献   

20.
Great efforts have been devoted to seek novel approaches for constructing blue fluorescent materials, which is one of the most important prerequisites for the commercialization of OLEDs. In recent years, various outstanding luminogens with aggregation‐induced emission characteristic exhibit promising applications as emitters, but blue AIE fluorophores with excellent EL performance are still very scarce. Here, five hole‐dominated blue AIE molecules are demonstrated by adopting construction approaches of changing linkage modes and increasing intramolecular torsion together, with the aim to restrict conjugation lengths without sacrificing good EL data. Device results show that the novel synthesized materials could be applied as bifunctional materials, namely blue light‐emitting and hole‐transporting materials, with comparable EL efficiencies, and the ηC,max and ηext,max are up to 8.03 cd A?1 and 3.99% respectively, which is among the best EL performance for blue AIE luminogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号