首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Radiography》2020,26(1):e18-e23
IntroductionThere is limited and confusing evidence within the literature regarding the optimal techniques when imaging neonates within incubators; in particular, whether to place the image receptor directly behind the neonate or in the incubator tray. For this reason, radiology departments across Wales and North West England were surveyed to explore existing working practice with regards to incubator imaging.MethodA self-designed survey was developed using a systematic approach. The survey was sent to 31 radiology departments across Wales and North West England whom had a neonatal unit in order to assess existing techniques used when imaging neonates within the incubator. The survey was split into three main domains: 1) general/demographics, 2) exposure factors and technique, and 3) incubator design.ResultsNineteen departments responded (64%) demonstrating a wide variation in practice for incubator imaging. The minimum and maximum exposure factors used for neonatal chest x-ray imaging varied from 55 kV to 65 kV and 0.5 mAs–2 mAs. Fifty-eight percent of departments used the incubator tray as standard practice with the remaining forty two percent not using the tray for various reasons including, image quality, artefacts and misalignment. Sixty-three percent of departments use the maximum achievable SID for incubator imaging which demonstrates wide variability as the SID would be dependent upon: incubator design, portable machine and radiographer height.ConclusionThe survey demonstrates a wide variation in existing practice for neonatal incubator imaging.Implications for practiceThis study supports the need for standardisation and further optimisation work to ensure best practice for this vulnerable patient group.  相似文献   

2.
《Radiography》2017,23(3):242-248
IntroductionPhysical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination.MethodsAn anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores.ResultsVisual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%).ConclusionThe acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose.  相似文献   

3.
IntroductionNeonates are a particularly vulnerable patient group with complex medical needs requiring frequent radiographic examinations. This study aims to compare computed radiography (CR) and direct digital radiography (DDR) portable imaging systems used to acquire chest x-rays for neonates within incubators.MethodsAn anthropomorphic neonatal chest phantom was imaged under controlled conditions using one portable machine but captured using both CR and DDR technology. Other variables explored were: image receptor position (direct and incubator tray), tube current and kV. All other parameters were kept consistent. Contrast-to-noise ratio (CNR) was measured using ImageJ software and dose-area-product (DAP) was recorded. Optimisation score was calculated by dividing CNR with the DAP for each image acquisition.ResultsThe images with the highest CNR were those acquired using DDR direct exposures and the images with lowest CNR were those acquired using CR with the image receptor placed within the incubator tray. This is also supported by the optimisation scores which demonstrated DDR direct produced the optimal combination with regards to CNR and radiation dose. The CNR had a mean increase of 50.3% when comparing DDR direct with CR direct respectively. This was also evident when comparing DDR and CR for in-tray acquisitions, with CNR increasing by a mean of 43.5%. A mean increase of 20.4% was seen in CNR when comparing DDR tray exposures to CR direct.ConclusionDDR direct produced images of highest CNR, with incubator tray reducing CNR for both CR and DDR. However, DDR tray still had better image quality compared to CR direct.Implications for practiceWhere possible, DDR should be the imaging system of choice for portable examinations on neonates owing to its superior image quality at lower radiation dose.  相似文献   

4.
《Radiography》2023,29(2):313-318
IntroductionThis study aims to optimise the current CTPA protocol at a public general hospital in Malta using lower kV combined with high Iterative Reconstruction (IR) (>50%).MethodsThe research consisted of a 2-phase anthropomorphic phantom study. Phase 1: radiation dose evaluation of 6 experimental protocols consisting of the low kV technique and high IR values and comparison with the current protocol. Phase 2: image evaluation. Objective image quality was evaluated in terms of contrast to noise ratio (CNR) and signal to noise ratio (SNR). Subjective image quality evaluation was performed by 3 radiologists undertaking Absolute Visual Grading Analysis (VGA). Resultant image quality scores were analysed using Visual Grading Characteristics (VGC).ResultsAll experimental protocols achieved significant (p < 0.05) dose reductions. SNR and CNR improved in almost all protocols, however, differences were not significant (p > 0.05). In subjective image quality analysis, the current protocol provided significant superior image quality (AUC > 0.5; p < 0.05) when compared to the experimental protocols consisting of 80 kV with 70%, 80%, 90% and 100% IR. The only two experimental protocols yielding comparable image quality to the current protocol were 80 kV with 50% IR (AUC: 0.195; p: 0.137) and 80 kV with 60% IR (AUC: 0.554; p: 0.624). The protocol yielding the greatest decrease in radiation dose being 80 kV with 60% IR.ConclusionsThe optimal IR value was 60%. When applying the optimal experimental protocol (80 kV combined with 60% IR), a significant dose reduction was achieved while maintaining diagnostic image quality.Implications for practiceThe low kV technique combined with high IR parameter is easily implemented and involves no additional cost and equipment.  相似文献   

5.
《Radiography》2022,28(1):107-114
IntroductionThis study aims to identify optimal exposure parameters, delivering the lowest radiation dose while maintaining images of diagnostic quality for the antero-posterior (AP) abdomen x-ray projection in large patients with an AP abdominal diameter of >22.3 cm.MethodologyThe study was composed of two phases. In phase 1, an anthropomorphic phantom (20 cm AP abdominal diameter) was repetitively radiographed while adding 3 layers (5 cm thick each) of fat onto the phantom reaching a maximum AP abdominal diameter of 35 cm. For every 5 cm thickness, images were taken at 10 kVp (kilovoltage peak) intervals, starting from 80 kVp as the standard protocol currently in use at the local medical imaging department, to 120 kVp in combination with the use of automatic exposure control (AEC). The dose area product (DAP), milliampere-second (mAs) delivered by the AEC, and measurements to calculate the signal to noise ratio (SNR) and contrast to noise ratio (CNR) were recorded. Phase 2 included image quality evaluation of the resultant images by radiographers and radiologists through absolute visual grading analysis (VGA). The resultant VGA scores were analysed using visual grading characteristics (VGC) curves.ResultsThe optimal kVp setting for AP abdominal diameters at: 20 cm, 25 cm and 30 cm was found to be 110 kVp increased from 80 kVp as the standard protocol (with a 56.5% decrease in DAP and 76.2% in mAs, a 54.2% decrease in DAP and 76.2% decrease in mAs and a 29.2% decrease in DAP and 59.7% decrease in mAs, respectively). The optimal kVp setting for AP abdominal diameter at 35 cm was found to be 120 kVp increased from 80 kvp as the standard protocol (with a 50.7% decrease in DAP and 73.4% decrease in mAs). All this was achieved while maintaining images of diagnostic quality.ConclusionTailoring the exposure parameters for large patients in radiography of the abdomen results in a significant reductions in DAP which correlates to lower patient doses while still maintaining diagnostic image quality.Implications for clinical practiceThis research study and resultant parameters may help guide clinical departments to optimise AP abdomen radiographic exposures for large patients in the clinical setting.  相似文献   

6.
《Radiography》2022,28(3):586-592
IntroductionTo identify the potential of beam hardening techniques, specifically the use of higher kilo voltage (kV) and copper (Cu) filtration, to optimise digital planar radiographic projections. The study assessed the suitability of such techniques in radiation dose reductions while maintaining diagnostic image quality for four common radiographic projections: antero-posterior (AP) abdomen, AP-knee, AP-lumbar spine, and lateral lumbar spine.MethodsAnthropomorphic phantom radiographs were obtained at varying kVp (standard kVp, +10 kVp, and +20 kVp) and varying Cu filtration thickness (0 mm, 0.1 mm, and 0.2 mm Cu). The Dose Area Product (DAP), mAs and time (s) were recorded as an indication of the emitted radiation dose. Image quality was assessed objectively via Contrast-Noise-Ratio (CNR) calculations and subjectively via Visual Grading Analysis (VGA) performed by radiographers and radiologists.ResultsOptimised exposure protocols were established for the AP-abdomen (100 kVp with 0.2 mm Cu), AP-knee (85 kVp, and 0.1 mm Cu), AP-lumbar spine (110 kVp and 0.2 mm Cu), and lateral lumbar spine (110 kVp and 0.2 mm Cu). This strategy resulted in respective DAP reductions of 71.98%, 62.50%, 64.51% and 71.85%. While CNR values decreased as beam hardening techniques were applied, VGA demonstrated either a lack of statistical variation or improved image quality between the standard and the optimised exposure protocols.ConclusionsDAP reductions without compromising image quality can be achieved through beam hardening for the AP-abdomen, AP-knee, AP-lumbar spine, and lateral lumbar spine projections.Implications for practiceBeam hardening techniques should be considered as an optimisation strategy in medical imaging departments. Research into the applicability of this strategy for other radiographic projections is recommended.  相似文献   

7.
《Radiography》2014,20(4):351-355
AimA quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality.MethodsUsing a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication.ResultsResults demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID.ConclusionFor CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality.  相似文献   

8.
BackgroundObtaining diagnostic CT image quality with ultra-low radiation dose in young children with congenital heart disease remains challenging.ObjectiveWe evaluated the feasibility and image quality of prospectively electrocardiogram (ECG)-triggered high-pitch spiral acquisition with iterative reconstruction for pediatric cardiovascular CT angiography.MethodsSixty-two consecutive pediatric patients younger than 2 years with congenital heart disease underwent prospectively ECG-triggered high-pitch spiral dual-source CT acquisition. Patients were randomly assigned into 2 groups: full tube current (40–70 mAs) scans with filtered back projection reconstruction (group A) and half tube current (20–35 mAs) scans with sinogram-affirmed iterative reconstruction (group B). Attenuation, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and subjective image quality were compared between the 2 groups. Effective radiation dose was also estimated for both groups.ResultsNo significant difference was found in the attenuation, image noise, SNR, and CNR between the 2 groups in the same evaluated anatomic regions, whereas the attenuation and image noise were slightly lower, and the SNR and CNR were slightly higher in group B. No significant difference was found in subjective image quality between the 2 groups (4.27 ± 0.73 vs. 4.34 ± 0.42; P = .813). Effective dose was 0.06 ± 0.03 mSv in group B and 0.13 ± 0.04 mSv in group A, reflecting dose savings of 53.8% by using iterative reconstruction.ConclusionsA combination of prospectively ECG-triggered high-pitch spiral acquisition, low tube current, and iterative reconstruction may offer diagnostic image quality in pediatric cardiovascular CT angiography with effective radiation dose < 0.1 mSv.  相似文献   

9.
《Radiography》2020,26(2):e103-e108
IntroductionA study was conducted to determine whether the anode heel effect can be used to influence optimisation of radiation dose and image quality (IQ) for AP pelvis radiography.MethodsATOM dosimetry phantom and an anthropomorphic phantom were positioned for AP pelvis. Using a CR system, images were acquired and doses were measured with phantom feet toward anode and then feet toward cathode. Exposure factors (kVp, mAs and SID) were systematically generated using a factorial design. Images were scored visually for quality using relative visual grading together with a 3 point Likert scale. Signal to noise ratio was also calculated as a physical measure of image quality. Dosimetry data were collected for the ovaries and testes.ResultsThe optimum technique for male, which resulted in lower dose and suitable image quality, was with feet positioned toward the anode (0.80 ± 0.03 mGy; SNR of 38 ± 2.9; visual IQ score 3.13 ± 0.35). The optimum technique for female was with feet toward anode (0.23 ± 0.02 mGy; SNR of 34.7 ± 2.6; visual IQ score 3.15 ± 0.26). kVp had the biggest effect on both visual and physical image quality metrics (p < 0.001) for both tube orientations, whereas SID had the lowest effect on both visual and physical image quality metrics compared with mAs and kVp (p < 0.001). The effect of SID on the SNR was not significant (p > 0.05) with feet toward anode.ConclusionPositioning the patient with feet toward the anode, as opposed to the cathode, has no adverse effect on visual image quality assessment but it does have an effect on physical image quality.Implications for practiceThis study would add a new clinical concept in positioning of AP pelvis radiography especially for male positioning.  相似文献   

10.
《Radiography》2022,28(2):433-439
IntroductionWhile tin prefiltration is established in various CT applications, its value in extremity cone-beam CT relative to optimized spectra has not been thoroughly assessed thus far. This study aims to investigate the effect of tin filters in extremity cone-beam CT with a twin-robotic X-ray system.MethodsWrist, elbow and ankle joints of two cadaveric specimens were examined in a laboratory setup with different combinations of prefiltration (copper, tin), tube voltage and current–time product. Image quality was assessed subjectively by five radiologists with Fleiss’ kappa being computed to measure interrater agreement. To provide a semiquantitative criterion for image quality, contrast-to-noise ratios (CNR) were compared for standardized regions of interest. Volume CT dose indices were calculated for a 16 cm polymethylmethacrylate phantom.ResultsRadiation dose ranged from 17.4 mGy in the clinical standard protocol without tin filter to as low as 0.7 mGy with tin prefiltration. Image quality ratings and CNR for tin-filtered scans with 100 kV were lower than for 80 kV studies with copper prefiltration despite higher dose (11.2 and 5.6 vs. 4.5 mGy; p < 0.001). No difference was ascertained between 100 kV scans with tin filtration and 60 kV copper-filtered scans with 75% dose reduction (subjective: p = 0.101; CNR: p = 0.706). Fleiss’ kappa of 0.597 (95% confidence interval 0.567–0.626; p < 0.001) indicated moderate interrater agreement.ConclusionConsiderable dose reduction is feasible with tin prefiltration, however, the twin-robotic X-ray system's low-dose potential for extremity 3D imaging is maximized with a dedicated low-kilovolt scan protocol in situations without extensive beam-hardening artifacts.Implications for practiceLow-kilovolt imaging with copper prefiltration provides a superior trade-off between dose reduction and image quality compared to tin-filtered cone-beam CT scan protocols with higher tube voltage.  相似文献   

11.
《Radiography》2022,28(3):663-667
IntroductionAnti-scatter grids efficiently reduce scatter radiation from reaching the imaging receptor, enhancing image quality; however, the patient radiation dose increases in the process. There is disagreement regarding the thickness thresholds for which anti-scatter grids are beneficial. This study aims to establish a thickness threshold for the use of anti-scatter grids to optimise adult knee radiography.MethodsThe study consisted of two phases. In Phase 1 phantom knee radiographs were acquired at varying thicknesses (10–16 cm) and tube voltages (60–80 kV). For each thickness and tube voltage, images with and without an anti-scatter grid were obtained. In Phase 2, two radiologists and three radiographers, evaluated the image quality of these images. Visual Grading Analysis (VGA) scores were analysed using Visual Grading Characteristics (VGC) based on the visualisation of five anatomic criteria.ResultsThe average DAP decreased by 72.1% and mAs by 73.1% when removing the anti-scatter grid. The VGC revealed that overall images taken with an anti-scatter grid have better image quality (AUC ≥0.5 for all comparisons). However, the anti-scatter grids could be removed for thicknesses 10, 12 and 14 cm in conjunction with using 80 kVp,.ConclusionAnti-scatter grids can be removed when imaging adult knees between 10 and 12 cm using any kVp setting since the radiation dose is reduced without significantly affecting image quality. For thicknesses >12 cm, the use of anti-scatter grids significantly improves image quality; however, the radiation dose to the patient is increased. The exception is at 14 cm used with 80 kVp, where changes in image quality were insignificant.Implications for practiceOptimisation by removing anti-scatter grids in adult knee radiography seems beneficial below 12 cm thickness with any kVp value. Since the average knee thickness ranges between 10 and 13 cm, anti-scatter grid can be removed for most patients. Nevertheless, further studies are recommended to test if this phantom-based threshold applies to human subjects.  相似文献   

12.
《Radiography》2020,26(3):227-233
IntroductionLumbar spine radiography is considered as having a high radiation dose compared to other planar radiography examinations. The aim of this study was to investigate the feasibility of replacing an antiscatter grid with an air gap technique to achieve dose reduction for lateral lumbar spine radiography while maintaining image quality on a direct digital radiography (DDR) system.MethodsIn phase 1, an experimental study using an anthropomorphic phantom identified the optimal airgap technique. In phase 2, lateral projections of the lumbar spine were performed on 50 patients randomly assigned equally into a control group (using the antiscatter grid) and an experimental group (using the airgap technique). The dose area product (DAP) was recorded, keeping other variables constant. Image quality evaluation was performed by 5 radiologists performing Absolute Visual Grading Analysis (VGA) using an image quality score tool, with resultant scores analysed using Visual Grading Characteristics (VGC).ResultsA 10 cm airgap in conjunction with a source to image distance (SID) of 121 cm was found as the optimal airgap technique. The clinical application of this technique resulted in a statistically significant (p < 0.05) reduction in DAP of 72%. Image quality scores were higher for the antiscatter grid but variation between the two techniques was not significant (p > 0.05).ConclusionReplacing the antiscatter grid with an airgap technique in lateral lumbar spine digital radiography, provides a significant dose reduction whilst still maintaining diagnostic image quality.Implications for practiceThe airgap technique is a simple and easy technique to implement and radiographers should find no difficulties in applying it, as It involves no additional cost and no additional equipment.  相似文献   

13.
《Radiography》2014,20(1):53-57
Several studies have shown that in trauma imaging, a full length antero-posterior femur on one image is desirable. An increased source image distance (SID) is required, and radiographic approaches to the amount of increase appear to be subjective. The current study investigated objective approaches to optimising the SID and exposure factors for full length femur radiography.Multiple pelvis and femur exposures were made on a cadaver. Dose Area Product was recorded for each exposure, and the image from each was assessed by four independent observers. Image quality was scored using reliable anatomical criteria. The mean image quality scores were considered in the context of the relevant DAP dose to permit comment on an optimal exposure factor combination.Results demonstrated that a source image distance (SID) of 140 cm will permit visualisation of an average length femur, but a SID of 150 cm is recommended as standard to ensure visualisation of the full femur of taller patients. The optimal femur exposure is derived from that of a pelvis using this simple algorithm:
  • 1.Remove the grid and increase SID to 140 cm;
  • 2.Maintain the kVp;
  • 3.Reduce the mAs by the grid factor of 4;
  • 4.Then double the mAs to account the 1.5× increase in SID.
The study highlights the greater value of objective and evidence based approaches to radiography over a more subjective approach, and reinforces the ongoing need for research in all aspects and areas of imaging.  相似文献   

14.
IntroductionThe need to continually optimise CT protocols is essential to ensure the lowest possible radiation dose for the clinical task and individual patient. The aim of this study was to explore the effect of reducing effective mAs on nodule detection and radiation dose across six scanners.MethodsAn anthropomorphic chest phantom was scanned using a low-dose chest CT protocol, with the effective mAs lowered to the lowest permissible level. All other acquisition parameters remained consistent. Images were evaluated by five radiologists to determine their sensitivity in detecting six simulated nodules within the phantom. Image noise was calculated together with DLP.ResultsThe lowest possible mAs achievable ranged from 7 to 19 mAs. The two highest mAs setting (17 mAs + 19 mAs) had kV modulation enabled (100 kV instead of 120 kV) which consequently resulted in a higher nodule detection rate. Overall nodule detection averaged at 91% (range 80–97%). Out of a possible 180 nodules, 16 were missed, with 12 of those 16 being the same nodule. Noise was double for the Somatom Sensation scanner when compared to the others; however, this scanner did not have iterative reconstruction and it was installed over 10 years ago. There was a strong correlation between image noise and scanner age.ConclusionThis study highlighted that nodules can be detected at very low effective mAs (<20 mAs) but only when other acquisition parameters are optimised i.e. iterative reconstruction and kV modulation. Nodule detection rates were affected by nodule location and image noise.Implications for practiceThis study consolidates previous findings on how to successfully optimise low-dose chest CT. It also highlights the difficulty with standardisation owing to factors such as scanner age and different vendor attributes.  相似文献   

15.
《Radiography》2022,28(1):2-7
IntroductionThe purpose of this study was to compare a dual energy CT (DECT) protocol with 50% reduction of iodinated contrast to a single energy CT (SECT) protocol using standard contrast dose in imaging of the thoracic aorta.MethodsDECT with a 50% reduction in iodinated contrast was compared with SECT. For DECT, monoenergetic images at 50, 55, 60, 65, 68, 70, and 74 keV were reconstructed with adaptive statistical iterative reconstruction (ASiR-V) of 50% and 80%. Objective image quality parameters included intravascular attenuation (HU), image noise (SD), contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Two independent radiologists subjectively assessed the image quality for the 55 and 68 keV DECT reconstructions and SECT on a five-point Likert scale.ResultsAcross 14 patients, the intravascular attenuation at 50–55 keV was comparable to SECT (p > 0.05). The CNRs were significantly lower for DECT with ASIR-V 50% compared to SECT for all keV-values (p < 0.05 for all). For ASIR-V 80%, CNR was comparable to SECT at energies below 60 keV (p > 0.05). The subjective image quality was comparable between DECT and SECT independent of keV level.ConclusionThis study indicates that a 50% reduction in iodinated contrast may result in adequate image quality using DECT with monoenergetic reconstructions at lower energy levels for the imaging of the thoracic aorta. The best image quality was obtained for ASiR-V 80% image reconstructions at 55 keV.Implications of practiceDual energy CT with a reduction in iodinated contrast may result in adequate image quality in imaging of the thoracic aorta. However, increased radiation dose may limit the use to patients in which a reduction in fluid and iodinated contrast volume may outweigh this risk.  相似文献   

16.
《Radiography》2023,29(1):44-49
IntroductionThis study investigated the image quality of a new quantum iterative reconstruction algorithm (QIR) for high resolution photon-counting CT of the hip.MethodsUsing a first-generation photon-counting CT scanner, five cadaveric specimens were examined with ultra-high-resolution protocols matched for radiation dose. Images were post-processed with a sharp convolution kernel and five different strength levels of iterative reconstruction (QIR 0 – QIR 4). Subjective image quality was rated independently by three radiologists on a five-point scale. Intraclass correlation coefficients (ICC) were computed for assessing interrater agreement. Objective image quality was evaluated by means of contrast-to-noise-ratios (CNR) in bone and muscle tissue.ResultsFor osseous tissue, subjective image quality was rated best for QIR 2 reformatting (median 5 [interquartile range 5–5]). Contrarily, for soft tissue, QIR 4 received the highest ratings among compared strength levels (3 [3–4]). Both ICCbone (0.805; 95% confidence interval 0.711–0.877; p < 0.001) and ICCmuscle (0.885; 0.824–0.929; p < 0.001) suggested good interrater agreement. CNR in bone and muscle tissue increased with ascending strength levels of iterative reconstruction with the highest results recorded for QIR 4 (CNRbone 29.43 ± 2.61; CNRmuscle 8.09 ± 0.77) and lowest results without QIR (CNRbone 3.90 ± 0.29; CNRmuscle 1.07 ± 0.07) (all p < 0.001).ConclusionReconstructing photon-counting CT data with an intermediate QIR strength level appears optimal for assessment of osseous tissue, whereas soft tissue analysis benefitted from applying the highest strength level available.Implications for practiceQuantum iterative reconstruction technique can enhance image quality by significantly reducing noise and improving CNR in ultra-high resolution CT imaging of the hip.  相似文献   

17.
《Radiography》2018,24(1):e1-e12
IntroductionThis study investigated the impact of different protocols on radiation dose and image quality for obese patients undergoing abdominal CT examinations.MethodsFive abdominal/pelvis CT protocols employed across three scanners from a single manufacturer in a single centre used a variety of parameters (kV: 100/120, reference mAs: 150/190/218/250/300, image reconstruction: filtered back projection (FBP)/iterative (IR)). The routine protocol employed 300 reference mAs and 120 kV. Data sets resulting from obese patient examinations (n = 42) were assessed for image quality using visual grading analysis by three experienced radiologists. Objective assessment (noise, signal/contrast-noise ratios) and radiation dose was compared to determine optimal protocols for prospective testing on a further sample of patients (n = 47) for scanners using FBP and IR techniques.ResultsCompared to the routine protocol, mean radiation dose was reduced by 60% when using 100 kV and SAFIRE technique strength 3 (p = 0.001). Reduction of up to 30% in radiation dose was noted for the FBP protocol: 120 kV and 190 reference mAs (p = 0.008). Subjective and objective image quality for both protocols were comparable to that of the routine protocol (p > 0.05). An overall improvement in image quality with increasing strength of SAFIRE was noted. Upon clinical implementation of the optimal dose protocols, local radiology consensus deemed image quality to be acceptable for the participating obese patient cohort.ConclusionRadiation dose for obese patients can be optimised whilst maintaining image quality. Where iterative reconstruction is available relatively low kV and quality reference mAs are also viable for imaging obese patients at 30–60% lower radiation doses.  相似文献   

18.
IntroductionWith increasing adoption of CT coronary angiography (CTA) there is increasing demand for cost-effective, small footprint, dedicated cardiac scanners. We compared a state-of-the-art, small footprint dedicated cardiac scanner (DCCT) to a standard multidetector scanner (MDCT).MethodsThe study was a retrospective unblinded single centre study. A total of 800 patients were included, with 400 undergoing a DCCT and MDCT coronary CTA scanning, respectively. Image quality was assessed using a 4-point grading score. Image noise and artifact, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and acceptance rate for CT-derived fractional flow reserve (FFRct) were recorded.ResultsOverall image quality was higher in the DCCT group (3.8 ± 0.55 vs 3.6 ± 0.69; p = 0.042). There was no difference in overall image noise (p = 0.131) or artifact (p = 0.295). SNR was superior in the DCCT group (14.2 ± 6.85 vs 11.4 ± 3.32; p < 0.005) as was CNR (12.7 ± 6.77 vs 11.9 ± 3.29; p < 0.005). The heart rate was lower in the DCCT group (56 ± 9.1 vs 59 ± 8.1; p < 0.005). No difference in the dose length product (DLP median 244.53 (IQR 105.6) vs 237.63 (IQR 160.1); p = 0.313) or FFRCT acceptance rate (100 vs 97.7%; p > 0.05) was noted. Independent predictors of excellent quality regardless of scanner type were age (p = 0.011), heart rate <65 bpm (p < 0.005), and body mass index < 35 (p < 0.005).ConclusionA DCCT scanner is capable of image quality similar to modern current generation general purpose CT technology. Such technology appears to be a viable option to serve the increasing demand for CTCA imaging.  相似文献   

19.
Modern neonatal incubators incorporate an X-ray tray device into the mattress support structure to facilitate patient examination with minimal disturbance and distress. However, the usual method of examination is to place the image plate directly underneath the baby. Users often cite radiological reasons for not using X-ray trays but modern quantitative evidence is lacking. This work looks at the technical and clinical aspects of imaging neonates in incubators and the impact that these may have in determining the imaging protocol. A number of hospitals were surveyed to determine their current method of examination and the reasons for their preference. Experimental measurements of the radiological impact of using (or not using) the X-ray tray were performed for a range of neonatal incubators. The average dose to the image plate was 5.9 microGy (range 5.4-6.4 microGy) for the "plate on mattress" method and 3.0 microGy (2.0-3.8 microGy) when using the tray--a 49% reduction owing to the mattress support materials. However, when using a computed radiography (CR) imaging system, the image quality differences were marginal. Survey results indicated that nurses preferred to use the tray but that radiographers were reluctant. We conclude that incubator manufacturers could do much to improve the radiological performance of their equipment and we offer recommendations. We also conclude that, with appropriate nurse and radiographer training and the advent of CR imaging systems, use of X-ray tray facilities may optimize imaging of the neonate in the incubator.  相似文献   

20.
《Radiography》2018,24(2):104-109
PurposeTo optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy.MethodsTwo techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques.ResultsThe maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques.ConclusionsBased on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号