首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, plasma nitriding and plasma nitriding-oxidizing treatment have been performed on AISI 316 austenitic stainless steel. In order to evaluate its response to this treatment, their microstructures and wear resistance have been compared with conventional plasma nitrided. The treatment of plasma nitriding was performed at temperature of 450 °C for 5 h with gas mixture of N2/H2:1/3 whereas plasma nitriding-oxidizing was performed with the same parameters of plasma nitriding and temperature of 450 °C with gas mixture of O2/H2:1/5 for 15, 30 and 60 min. The structural, mechanical and tribological properties were analyzed using XRD, SEM, microhardness testing and pin-on-disk tribotesting. The results showed that oxidation treatment reduces wear resistance of plasma nitrided sample under high loads. Furthermore the tribological evaluation indicates that by increasing the oxidation time further reduction of wear resistance can be occurred. In addition, it was found that oxidation treatment after plasma nitriding provides an important improvement in the friction coefficient against a AISI 52100 steel pin and reduces surface roughness.  相似文献   

2.
Nitriding increases surface hardness and improves wear resistance of stainless steels. However, nitriding can sometimes reduce their corrosion resistance. In this paper, the influence of nitriding on the corrosion resistance of martensitic stainless steel was investigated. Plasma nitriding at 440 °C and 525 °C and salt bath nitrocarburizing were carried out on X17CrNi16‐2 stainless steel. Microhardness profiles of the obtained nitrided layers were examined. Phase composition analysis and quantitative depth profile analysis of the nitrided layers were preformed by X‐ray diffraction (XRD) and glow‐discharge optical emission spectrometry (GD‐OES), respectively. Corrosion behaviour was evaluated by immersion test in 1% HCl, salt spray test in 5% NaCl and electrochemical corrosion tests in 3.5% NaCl aqueous solution. Results show that salt bath nitrocarburizing, as well as plasma nitriding at low temperature, increased microhardness without significantly reducing corrosion resistance. Plasma nitriding at a higher temperature increased the corrosion tendency of the X17CrNi16‐2 steel.  相似文献   

3.
Surface states and wear behavior of drills of ground, sandblasted and plasmanitrided samples and drills made of AISI M2 high speed steel In the present work the effect of different surface conditions on plasma nitriding response of AISI M2 high speed steel was investigated. The plasma nitriding of ground and sandblasted samples and drills was performed at temperatures of 400°C and 500°C for two gas mixtures: 5 vol.% N2 and 76 vol.% N2 in hydrogen. Surface layers were characterized before and after plasma nitriding concerning the microstructure, roughness, microhardness, chemical composition, phase composition and residual stress states. Machining tests were carried out with drills during which drilling forces and flank wear have been measured. A significant effect of the surface state prior to nitriding on residual stress states and the properties of the nitrided layer and untreated core has been observed. Thinner nitrided layers on ground and sandblasted samples were attributed to high compressive residual stress states and a stress affected diffusion of nitrogen and carbon. In the machining tests, sandblasted drills exhibited the best performance. Lower nitrogen concentrations in the gas atmosphere without the formation of a compound layer gave the lowest drill flank wear for sandblasted surfaces while higher nitrogen concentrations led to a reduction of drilling forces and torque.  相似文献   

4.
Duplex surface treatments via aluminizing and plasma nitriding were carried out on AISI 1045 steel. A number of work pieces were aluminized and subsequently plasma nitrided (Al–PN) and other work pieces were plasma nitrided and then aluminized (PN–Al). Aluminizing was carried out via pack process at 1123 K for 5 h and plasma nitriding was performed at 823 K for 5 h. The fabricated steels were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and microhardness testing. Tribological behaviors of the duplex treated AISI 1045 steels were examined against tungsten carbide pin using a pin-on-disc apparatus at room temperature. The PN–Al specimen showed higher surface hardness, lower wear rate and coefficient of friction than the Al–PN one. It was noticed from the worn surfaces that tribo-oxidation plays an important role in wear behavior of both specimens.  相似文献   

5.
Abstract

In the present study, the properties of nitrided electroless Ni–B coatings prepared by conventional plasma nitriding and active screen plasma nitriding were investigated. For this purpose, electroless Ni–B coatings were deposited from an alkaline bath on AISI 4140 substrates. Then, some of the prepared coatings were plasma nitrided by conventional method and the other ones by active screen method under the same conditions. Microstructure, morphology, microhardness and wear resistance of the coatings were evaluated. Based on the results, post-treatments change the amorphous as deposited coating structure to a crystalline one, which increases microhardness and wear resistance. Employing plasma nitriding treatment on the coatings results in higher microhardness and superior wear resistance than conventional heat treatment. The sputtering of iron atoms during plasma nitriding process can be the main reason for these results. In addition, active screen plasma nitriding demonstrates less surface roughness and superior wear resistance than conventional plasma nitriding.  相似文献   

6.
The quenched M50NiL steel was plasma nitrided at 460°C for different time to investigate the effects of the duration time on the microstructure, microhardness and wear resistance of the nitrided layers. The results show that the plasma nitrided layer depth increases with increasing nitriding time. The plasma nitrided layer includes only the diffusion layer without compound layer. The main phases in the nitrided surface layer are nitrogen expended α′-Fe and γ′-Fe4N. The microstructure of the nitrided layer is refined. The wear resistance of the nitrided samples can be improved significantly by plasma nitriding. The sample nitrided for 4?h possesses the highest wear resistance, due to its relatively smooth surface and ultra-fine grains in the nitrided layer.  相似文献   

7.
氮势对奥氏体不锈钢离子渗氮性能的影响   总被引:2,自引:0,他引:2  
对AIS1304奥氏体不锈钢进行了不同氮势的离子渗氮,利用金相显微镜、轮廓仪、摩擦磨损试验机、X射线衍射仪和显微硬度计测试了经渗氮处理后试样改性层的截面形貌、微观结构、相组成和力学性能,并与未渗氮的试样进行了比较。结果表明:随着氮势的增加,试样表面的渗层深度、磨损程度、显微硬度呈规律性变化;X射线衍射分析表明:低氮势容易形成S相,高氮势有利于氮化物的形成。  相似文献   

8.
Austenitic stainless steels are widely used in medical and food industries because of their excellent corrosion resistance. However, they suffer from weak wear resistance due to their low hardness. To improve this, plasma nitriding processes have been successfully applied to austenitic stainless steels, thereby forming a thin and very hard diffusion layer, the so‐called S‐phase. In the present study, the austenitic stainless steels AISI 304L and AISI 316L with different microstructures and surface modifications were used to examine the influence of the steel microstructure on the plasma nitriding behavior and corrosion properties. In a first step, solution annealed steel plates were cold‐rolled with 38% deformation degree. Then, the samples were prepared with three kinds of mechanical surface treatments. The specimens were plasma nitrided for 360 min in a H2–N2 atmosphere at 420 °C. X‐ray diffraction measurements confirmed the presence of the S‐phase at the sample surface, austenite and body centered cubic (bcc)‐iron. The specimens were comprehensively characterized by means of optical microscopy, scanning electron microscopy, glow discharge optical emission spectroscopy, X‐ray diffraction, surface roughness and nano‐indentation measurements to provide the formulation of dependencies between microstructure and nitriding behavior. The corrosion behavior was examined by potentio‐dynamic polarization measurements in 0.05 M and 0.5 M sulfuric acid and by salt spray testing.  相似文献   

9.
Cathodic cage plasma nitriding is a new growth technique based on multiple hollow cathode effects. The samples are kept at a floating potential inside a cage that acts as a cathode and shields the samples from the cathodic potential. The aim of this work is to perform a systematic study of the properties of nitrided layers as a function of the distance from the nitriding sample surface to the cage wall using this technique. Cylindrical austenitic stainless steel AISI 316 samples were placed in different positions on an alumina plate inside the cathodic cage. The nitrided samples were characterized by optical microscopy, X-ray diffraction and microhardness measurements. The results show that the temperature inside the cage is nearly uniform and that the nitrided layers possess good physical properties and uniformity. Therefore, the differences in the nitrided layer thicknesses obtained at different positions must be due to particle flow reaching the sample surface, depending on how far the sample is from the cage walls.  相似文献   

10.
In this study, the effect of temperature of post-oxidation process on tribological and corrosion behavior of AISI 316 plasma nitrided stainless steel has been studied. Plasma nitriding was carried out at 450 °C for 5 h with gas mixture of N2/H2 = 1/3. The plasma nitrided samples were post-oxidized for 1 h with gas mixture of O2/H2 = 1/5 at different temperature of 400, 450 and 500 °C. The structural, tribological and corrosion properties were analyzed using XRD, SEM, microhardness testing, pin-on-disk tribotesting and electrochemical polarization. The results indicated that the nitride layer was composed of S-phase. The amount of S-phase decreased as the treatment temperature rose from 400 °C to 500 °C. In addition, it was found that oxidation treatment reduces wear resistance of plasma nitrided sample. It was demonstrated that the corrosion characteristics of the nitrided sample were further improved by post-oxidation treatment. The difference in corrosion resistance is mainly attributed to the thickness of the oxide top layer, which is governed by the post-oxidizing temperature.  相似文献   

11.
A medical cast CoCrMo alloy was coated by plasma nitriding process to enhance the wear resistance.The microstructures,phases and micro-hardness of nitrided layers were investigated by atomic force microscopy(AFM),scanning electron microscopy(SEM),X-ray diffraction(XRD) and micro-hardness.Tribological properties were investigated on a pin-on-disc wear tester under 25% bovine serum solutions.The experimental results showed that plasma nitriding was a promising process to produce thick,hard and wear resistant layers on the surface of CoCrMo alloy.The harder CrN and Cr2N phases formed on the plasma nitrided layer with the compact nano-crystalline structure.Compared with the untreated sample,all nitrided samples showed the lower wear rates and higher wear resistance at different applied loads and nitriding temperatures.It was concluded that the improvement of wear resistance could be ascribed to the formation of thicker and harder nitrided layers with the specific microstructures on nitrided surfaces.  相似文献   

12.
采用等离子渗氮技术提升TC4钛合金的耐磨性并探究最优渗氮温度。利用LDM 1-100型等离子渗氮设备,在650,700,750,800,850℃和900℃温度下对TC4钛合金进行渗氮处理,保温时间均为10 h。利用光学显微镜、扫描电子显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对不同温度渗氮试样的微观组织结构、表面形貌、表面粗糙度、相结构和硬度进行表征。利用CETR UMT-3型多功能摩擦磨损试验机测试等离子渗氮后TC4钛合金的摩擦学性能。结果表明:TC4钛合金表面显微硬度和粗糙度随温度升高而增大,在900℃渗氮后TC4钛合金表面显微硬度达到了1318HV 0.05,约为基体(360HV 0.05)的4倍。硬度的升高是由于渗氮后试样表面形成了硬质氮化物相(TiN和Ti2N相),且随着渗氮温度升高氮化物的含量增加。相较于低温渗氮(低于750℃)的试样,850℃和900℃渗氮试样的承载能力显著提升。与原始TC4试样相比,渗氮处理后试样的磨损体积显著降低。当渗氮温度为850℃时,试样磨损体积为未处理试样磨损体积的1.2%(1 N),3.0%(3 N)和62.2%(5 N),试样的耐磨性提升更为显著。  相似文献   

13.
Austenitic stainless steels have good corrosion resistance, but their low hardness and low wear resistance limit their use whenever surface hardness is required. Nitriding treatments have been successfully applied to stainless steels to improve their mechanical and tribological properties; however, at temperatures above 723 K, gas or salt bath nitriding processes decrease the corrosion resistance due to the formation of CrN and other phases within the modified layer. Chromium compounds draw chromium and nitrogen from the adjacent regions, degrading the corrosion resistance. The plasma nitriding technique permits the use of treatment temperatures as low as 623 K without promoting degradation in the corrosion resistance of stainless steel. In this work, the pulsed glow discharge (PGD) technique was used for nitriding steel (AISI304L) in order to investigate the effect of the temperature of this treatment in the morphology and, as a consequence, in the anodic behavior of the formed layers, in solution with and without chloride ions. Four different temperatures were employed (623, 673, 723, and 773 K). The samples were characterized by optical microscopy (OM), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness measurements, and electrochemical tests with potentiodynamic anodic polarization curves. The nitriding temperature alters the anodic behavior due to a displacement of the polarization curve towards higher currents, in a solution free of chloride ions. In a chloride solution, the nitriding temperature increases the pitting potential up to the oxygen evolution region.  相似文献   

14.
In this research, the microstructure, tribological and corrosion properties of plasma nitrided-oxidized AISI 316 austenitic stainless steel at high oxidation temperature were studied and compared with conventional plasma nitride. The structural, tribological and corrosion properties were analyzed using XRD, SEM, microhardness testing, pin-on-disk tribotesting and electrochemical polarization. Plasma nitriding was conducted for 5 h at 450 °C with gas mixture of N2/H2 = 1/3 to produce the S-phase. The nitrided samples were post-oxidized at 500 °C with gas mixture of O2/H2 = 1/5 for 15, 30 and 60 min. X-ray diffraction confirmed the development of CrN, ? and γ′ nitride phases and magnetite (Fe3O4) oxide phase under plasma nitriding-oxidizing process. In addition, it was found that oxidation treatment after plasma nitriding provides an important improvement in the friction coefficient and the corrosion resistance. The optimized wear and corrosion resistance of post-oxidized samples were obtained after 15 min of oxidation.  相似文献   

15.
Plasma nitriding is one of the effective methods for improvement of the hardness, wear and corrosion resistance of steels. In this research AISI H11 hot working tool steel was plasma nitrided in various gas mixtures for different times and temperatures. The morphology, size and composition of nitride nanoparticles formed on the surface of the specimens were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The wear behavior of plasma nitrided samples was studied by means of unlubricated pin-on-disc method under constant load of 80 N, sliding speed of 1 m/s, sliding distance of 2000 m at room temperature. The results showed plasma nitriding process improved the wear behavior of H11 steel. The increase in time and temperature of plasma nitriding decreased the hardness and increased the wear weigh loss of the specimens.  相似文献   

16.
Surface engineering approach to increase surface properties such as wear resistance performed by pulsed magnetic treatment of nitrided steels was studied. Selected steel surfaces were treated by pulsed magnetic treatment and plasma ion nitriding with different optimized process parameters. The obtained microstructures were examined to study the influence of magnetic treatment on ion nitriding. SEM, AES, microhardness measurements, and image analyser were used to characterize the surface and interface. The results of this study show that pulsed magnetic treatment reduces residual stresses on the surface, improves the bonding of deposited nitride layers to substrate, influences the nitride layers, case depth, and surface hardness formation and increases the wear resistance.  相似文献   

17.
A series of experiments have been conducted on AISI 304 stainless steel using a hollow cathode discharge assisted plasma nitriding apparatus. Specimens were nitrided at high temperatures (520–560 °C) in order to produce nitrogen expanded austenite phase within a short time. The nitrided specimen was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, potentiodynamic polarization and microhardness tester. The corrosion properties of nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The nitrided layer was shown to consist of nitrogen expanded austenite and possibly a small amount of CrN precipitates and iron nitrides. The results indicated that rapid nitriding assisted hollow cathode discharge not only increased the surface hardness but also improved the corrosion resistance of the untreated substrate.  相似文献   

18.
316L austenitic stainless steel was gas nitrided at 570 °C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened–nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.  相似文献   

19.
The tribological properties of nitrided layer and sulfurized-nitrided layer of AISI 4135 steel were investigated under oil lubrication, and the layers were prepared by the ion nitriding treatment and a two-step method as the ion nitriding plus sulfurizing duplex treatment, respectively. A ball-on-disc friction and wear tester was adopted to evaluate the tribological performance. Scanning electron microscope (SEM), scanning Auger microprobe (SAM) and X-ray photoelectron spectroscope (XPS) were used to identify the morphologies and chemical compositions of the treated layer and the worn surface. It was presented that the sulfurized-nitrided sample with a thin FeS layer possessed much better tribological behaviors than the nitrided sample, including load carrying capacity, wear resistance, friction reduction and duration time. The mechanism was supposed that the decomposed activated S atoms of FeS layer promoted a new FeS chemical reaction film formation, which induced to the thin FeS layer playing as a solid lubricant for a longer time.  相似文献   

20.
In this paper, we report on a series of experiments designed to study the influence of plasma nitriding on the mechanical properties and the corrosion resistance of austenitic stainless steel. Plasma nitriding experiments were conducted on AISI 304L steel in a temperature range of 375‐475°C using pulsed‐DC plasma with different N 2‐H 2 gas mixtures and treatment times. First of all, the formation and the microstructure of the modified layer will be highlighted followed by the results of hardness measurement, adhesion testing, wear resistance and fatigue life tests. In addition the corrosion resistance of the modified layer is described. The microhardness after plasma nitriding is increased by a factor of five compared to the untreated material. The adhesion is examined by Rockwell indentation and scratch test. No delamination of the treated layer could be observed. The wear rate after plasma nitriding is significantly reduced compared to the untreated material. Plasma nitriding produces compressive stress within the modified layer. This treatment improves the fatigue life which can be raised by a factor of ten at a low stress level. The results show that plasma nitriding of austenitic stainless steel is a suitable process for improving the mechanical and the technological properties without significantly effecting the excellent corrosion resistance of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号