首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过Plackett-Burman设计和响应面分析对B.natto TK-2发酵产γ-PGA的培养基进行了优化。首先通过Plackett-Burman设计从6个因素中筛选出了有显著影响的葡萄糖、味精、CaCl_2等3个因素;然后通过最陡爬坡和Box-Behnken设计进一步优化,并利用SAS软件进行回归分析,得到以上3个因素的最佳浓度分别为(g/ L):葡萄糖21.4,味精25.1,CaCl_2 2.6。在优化后的培养基下,γ-PGA的产量比优化前提高了34.01%。  相似文献   

2.
利用响应面法优化γ-聚谷氨酸发酵培养基   总被引:2,自引:0,他引:2  
利用筛选出的枯草芽孢杆菌发酵生产γ-聚谷氨酸,并对其发酵培养基进行优化。首先采用逐因子试验法寻找出各因素的参考范围。在此基础上,利用Plackett-Burman试验筛选出显著影响γ-PGA产量的3个主要因素:酵母粉、谷氨酸钠和CaCl2。用最陡爬坡试验逼近最大产γ-PGA的区域。然后利用Box-Behnken试验对显著因素进行优化,得酵母粉、谷氨酸钠和CaCl2的最佳浓度分别为4.18g/L、76.89g/L和0.1422g/L。在优化后发酵培养基条件下,γ-PGA的产量达到了43.26g/L,比初始γ-PGA产量提高了1.035倍。  相似文献   

3.
响应面法优化γ-聚谷氨酸发酵培养基的研究   总被引:2,自引:0,他引:2  
采用响应面法对γ-聚谷氨酸发酵培养基成分进行优化.首先用Plackett-Burman(PB)设计对培养基中相关影响因素的效应进行评价,筛选出3个有显著影响效应的因素,分别为蛋白胨、谷氨酸及硫酸锰.然后进行最陡爬坡实验逼近最佳响应面区域,最后通过Box-Behnken设计及响应面分析确定了主要影响因素的最佳浓度.在优化的培养基中,γ-聚谷氨酸的产量达到28.91 g/L,比优化前的12.5 g/L提高了2.31倍.  相似文献   

4.
目的:鉴定一株高产γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)的菌株,并优化其发酵培养基。方法:以实验室前期诱变筛选出的菌株N-2出发,通过16s rDNA核酸序列分析,对该菌株进行了鉴定;采用单因素实验、响应面设计对菌株的发酵培养基进行优化,最终确定最佳培养基配方。结果:经过16s rDNA序列分析,菌株N-2被鉴定为Bacillus subtilis。通过Plackett-Burman(PB)试验,筛选出3个显著影响γ-PGA产量的因素:葡萄糖、谷氨酸钠和K2HPO4·3H2O;用最陡爬坡试验逼近最大产量区后,利用box-behnken试验获得响应曲面最优解,确定葡萄糖、谷氨酸钠和K2HPO4·3H2O的最佳浓度分别为42.93、44.85、2.39 g/L。经过54 h发酵γ-PGA终产量为28.51 g/L,比优化前提高了34.48%。结论:响应面法试验次数少、周期短,可以快速优化发酵培养基成分,结果可靠,是提高产量的有效途径。  相似文献   

5.
响应面法优化固态发酵生产γ-多聚谷氨酸   总被引:1,自引:0,他引:1  
利用前期实验数据,通过响应面实验对培养基进行优化,得到固态发酵生产γ-PCA最佳条件:豆粉24.6%、麦麸6.2%、味精粕6.4%、水65%、葡萄糖2.2%、NaNO30.6%、接菌量8%,40℃发酵42h,发酵结束后,γ-PGA产量为90.05g/kg.  相似文献   

6.
细菌纤维素/γ-聚谷氨酸复合膜发酵条件的优化   总被引:1,自引:0,他引:1  
在发酵培养基中添加γ-聚谷氨酸(γ-PGA),可以制备具有更优性能的细菌纤维素(BC)复合膜.采用响应面分析法优化细菌纤维素/γ-聚谷氨酸复合膜发酵生产工艺,首先通过Plackctt-Burman试验设计对影响复合膜发酵生产的8个因素进行筛选,得到3个关键影响因子:聚谷氨酸添加浓度,pH和γ-聚谷氨酸的添加时间;然后用最陡爬坡试验逼近响应值的最大区域;最后通过Box-Behnken设计及响应曲面分析确定了各考察因子的最佳取值:葡萄糖25g/L,柠檬酸6g/L,Na2HPO42g/L,γ-聚谷氨酸1.04g/L,γ-聚谷氨酸的添加时间4h,发酵初始pH5.0,温度30℃,发酵周期7d.在优化条件下复合膜的湿重达到61.07g/100mL培养基试验值与预测值误差为-3.05%,较初始培养基复合膜产量提高9 1.32%.  相似文献   

7.
利用响应面法优化GSH发酵培养基   总被引:3,自引:1,他引:2  
利用Plackett-Burman试验设计,筛选出影响GSH产量的3个重要因素,分别为葡萄糖、蛋白胨、KH2PO4.在此基础上,再利用Box-Behnken试验设计及借助于MINTAB软件进行二次回归分析,确定了主要影响因素的最佳浓度,葡萄糖、蛋白胨、KH2PO4最佳发酵质量浓度分别为2.75%、3.03%、0.11%.在优化的培养基中,GSH产量达到147.02mg/L,比优化前的98.94mg/L提高48.60%.  相似文献   

8.
γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是一种新型绿色高分子材料,被广泛应用于农业生产、食品、医药等众多领域。目前γ-PGA生产成本高,产量低等问题较为突出。为降低生产成本,该文以廉价甘蔗糖蜜作为碳源。利用单因素与响应面法优化发酵培养基。结果显示,最佳培养基组成为糖蜜可溶性固形物浓度8.68%、酵母膏浓度4.23 g/L、FeSO4·7H2O 浓度 0.78 g/L,味精浓度 80 g/L,γ-PGA 产量为(67.88±0.41)g/L,与预测值 67.17 g/L 非常接近,相较于优化前γ-PGA产量提高了1.19倍,为工业化生产奠定基础。  相似文献   

9.
通过响应面分析的方法对γ-氨基丁酸(GABA)的发酵条件进行优化.在前期单因素试验的基础上,首先利用Plackett-Burman(PB)法筛选出对乳酸菌液体发酵产GABA的4个主要的影响因素:L-谷氨酸钠(L-MSG)、大豆蛋白胨、CaCl2和MnSO4·H2O.第二步用 最陡爬坡路径逼近最大产量区域.最后由中心组合试验及响应面分析确定了主要影响因素的最佳条件.在优化条件下,GABA的产量为21.03g/L,比优化前的11.58g/L提高了81.61%.  相似文献   

10.
为提高暹罗芽孢杆菌LW-1(Bacillus Siamese LW-1)的γ-聚谷氨酸(γ-PGA)产量,基于单因素实验的结果,利用Plackett-Burman以及最陡爬坡实验确定响应面的最佳区域,设计一个三因素三水平的Box-Behnken实验来得到暹罗芽孢杆菌LW-1的最适培养基配方。结果表明,暹罗芽孢杆菌LW-1的最佳培养基配方为:谷氨酸钠86.71 g/L,柠檬酸钠17.94 g/L,MgSO4·7H2O 2.11 g/L,甘油25 g/L,KH2PO4 1.4 g/L,(NH4)2SO4 14 g/L,MnSO4 0.075 g/L,CaCl2 0.1 g/L,FeCl3·6H2O 0.04 g/L,在该培养基中γ-PGA产量达到44.78 g/L,与理论预测的最大值45.91 g/L非常接近,比未优化时(23.26 g/L)的γ-PGA产量提高了1.93倍。  相似文献   

11.
利用响应面法优化虾青素发酵培养基   总被引:1,自引:0,他引:1  
以红法夫酵母为研究对象,时其生物合成虾青素的培养基组分进行研究.首先进行单因素试验,确定最适培养基组分.再利用Plackett-Burman设计法考察培养基组分对虾青素生物合成的影响,选出2个对虾青素生物合成最为重要的营养因素:葡萄糖和复合氮源(牛肉膏:柠檬酸三铵=1:2,质量比).最后通过响应面法确定红法夫酵母产虾青素最佳培养基组分,分别为葡萄糖3.65%,复合氮源0.45%,KH2PO40.1%,MgSO4·7H2O0.05%,酵母浸粉0.1%,CaCl20.01%.此时虾青素含量可达到11.81 mg/L,比优化前提高了近190%.  相似文献   

12.
响应面法优化副干酪乳杆菌HD1.7产Paracin1.7发酵培养基   总被引:1,自引:0,他引:1  
目的:优化副干酪乳杆菌(Lactobacillus paracasei)HD1.7发酵产抗菌肤Paracin 1.7培养基.方法:采用Plackett-Burman设计,从8个因素中筛选显著的影响因素,然后通过最陡爬坡和Box-Behnken设计进行优化,并用JMP 7.01软件分析.结果:用Plackett-Burman设计筛选出影响显著的3个因素——葡萄糖、MgSO4、MnSO4,其最佳质量浓度分别为6.5685、0.454、0.01052 g/L.在优化后的培养基下,抗菌肤效价达141.648 IU/mL,产量比优化前(74.13 IU/mL)提高了1.91倍.结论:副干酪乳杆菌HD1.7产生的抗菌肽Paracin1.7对多种革兰氏阳性细菌、革兰氏阴性细菌及酵母菌都有抑制作用,可作为新型食品防腐剂.本研究结果为抗菌肤Paracin1.7的工业化生产奠定了基础.  相似文献   

13.
以γ-聚谷氨酸(γ-PGA)的产量为评价指标,在单因素试验基础上,利用正交试验法对纳豆芽孢杆菌(Bacillus natto)TK-2产γ-PGA的发酵工艺进行优化,并对其发酵产物进行高效液相色谱(HPLC)分析。结果表明,最佳培养基配方是葡萄糖2.5%,蛋白胨2.5%,味精2%,pH值7.5;最佳发酵条件是装液量70 mL/250 mL,接种量2%,发酵温度37 ℃,转速140 r/min,在此优化条件下进行验证试验,γ-PGA产量为11.48 g/L,提高了57.2%。HPLC分析表明,γ-PGA是谷氨酸的一种聚合物,其水解产物只有一种氨基酸。  相似文献   

14.
通过Plackett-Burman设计和响应面分析对微生物发酵提纯水苏糖的培养基进行了优化。通过Plackett-Burman设计从6个因素中筛选出了有显著影响的酵母浸膏、酪蛋白胨和硝酸钠3个因素;通过最陡爬坡和Box-bohnken设计进一步优化,并利用Minitab软件进行回归分析,得到以上3个因素的适宜浓度分别为(g/L):酵母膏13.8、酪蛋白胨8.2、硝酸钠4.8。采用优化的培养基下,水苏糖纯度由85%提高到91%。  相似文献   

15.
为了提高解淀粉芽孢杆菌fmbj37产γ-聚谷氨酸的产量,采用响应面法优化其发酵培养基成分。首先用Plackett-Burman(PB)设计对培养基中9个组分的重要性进行评价,筛选出3个关键影响因素:蔗糖、谷氨酸钠和磷酸氢二钾。然后进行最陡爬坡实验确定最佳响应面区域,最后通过响应面分析得到蔗糖、谷氨酸钠和磷酸氢二钾的最佳浓度。结果表明,经优化得到的最佳培养基成分为:蔗糖115 g/L、谷氨酸钠59.35 g/L、磷酸氢二钾2.85 g/L、蛋白胨10 g/L、硫酸镁1.5 g/L、氯化钾1 g/L、硫酸亚铁0.0006 g/L、硫酸锰0.025 g/L、硫酸铜0.00064 g/L,在该培养基中γ-聚谷氨酸的产量达到(41.2±0.51)g/L,比优化前的5.2 g/L提高了6.9倍。  相似文献   

16.
采用响应面方法对桔青霉产核酸酶P1的发酵培养基进行优化。首先通过Plackett-Burman实验,筛选出3个主要的影响因素:葡萄糖、CaCl2和ZnSO4.7H2O。然后运用爬坡路径法对这3种因子进行实验,获得这3种重要因子的最适质量浓度范围。最后通过响应面分析法,得出3种重要影响因子的交互作用及最佳条件。确定桔青霉产核酸酶P1的最佳发酵培养基为:葡萄糖51.82g/L,蛋白胨3g/L,KH2PO4和K2HPO4各0.3g/L,CaCl20.52g/L,MgSO4·7H2O0.6g/L,ZnSO4·7H2O0.34g/L,吐温-802mL/L,在此最佳培养基下发酵酶活可达419.7U/mL,比优化前提高了31.8%。  相似文献   

17.
《食品与发酵工业》2014,(5):222-228
采用非单一有机溶剂即甲醇-乙醇分步沉淀法从发酵液中提取聚谷氨酸(γ-PGA),通过响应面法对聚谷氨酸(γ-PGA)提取条件进行优化。在初步考察单因素影响的基础上,以BBD(Box-Behnken design)法设计考察有机溶剂沉淀倍数、沉淀pH、沉淀时间3个因素对γ-PGA提取纯度的交互影响,用Design-Expert v8.0.6.1软件对BBD实验数据进行分析处理。试验得到的最佳提取条件为:有机溶剂沉淀倍数为3.48、沉淀pH为8.13、沉淀7.30 h,γ-PGA提取纯度为75.16%,提取率83.77%,预测精准度达99.02%。  相似文献   

18.
γ-聚谷氨酸合成菌株的筛选与优化培养   总被引:1,自引:0,他引:1  
从土壤筛中筛选分离获得1株γ-聚谷氨酸合成菌Bacillus subtilis PGS-1,在富含谷氨酸和葡萄糖的培养基中可大量合成γ-聚谷氨酸,与大多文献报道的微生物合成的γ-聚谷氨酸相比,具有较低的分子量(300ku~400ku)和较窄的分子量分布,可适用于低分子量要求的医药、化妆品和水处理等应用领域,值得深入开发研究.为提高γ-聚谷氨酸的发酵产量,对Bacillus subtilis PGS-1的摇瓶培养基条件进行了响应面优化,确定了影响γ-PGA合成的显著因素依次为谷氨酸、葡萄糖和(NH4)2SO4;在优化条件下,γ-聚谷氨酸产量达26g/L,较优化前提高了44%.  相似文献   

19.
响应面法优化壳聚糖酶发酵培养基   总被引:2,自引:0,他引:2  
张朝正  李意  赵华 《中国酿造》2022,41(1):197-203
为了提高壳聚糖酶的产量,在单因素的试验基础上,采用响应面法优化诱变后菌株的发酵培养基。利用Plackett-Burman试验设计分析发酵培养基中的7个组分,确定了其中的3个显著因素为酵母浸粉、葡萄糖和MgSO4·7H2O,应用最陡爬坡试验确定了这3个因素的合理范围,再通过Box-Behnken响应面试验优化培养基组分。结果表明,最佳发酵培养基为:酵母浸粉16.9 g/L,葡萄糖10.3 g/L,NaCl 5 g/L,K2HPO4 1.4 g/L,KH2PO4 0.6 g/L,MgSO4·7H2O 1.2 g/L和吐温-80 1.2 g/L。在此优化条件下,壳聚糖酶酶活力达到10.57 U/mL,比优化前提高了11.77%。  相似文献   

20.
目的:筛选一株高产γ-聚谷氨酸(γ-PGA)的菌株,并优化其发酵条件。方法:从豆腐作坊周边土地取样,采用平板稀释涂布法,筛选高产γ-PGA的菌株,通过菌落形态、分子生物学方法对其进行鉴定;以γ-PGA产量为响应值,在单因素实验的基础上,以温度、pH、转速、底物浓度为实验因素,采用Box-Behnken法设计四因素三水平试验进行响应面优化,确定其产γ-PGA最佳发酵条件。结果:筛选获得一株高产γ-PGA的芽孢杆菌B-6578,鉴定为暹罗芽孢杆菌(Bacillus siamensis);通过单因素和响应面最终获得该芽孢杆菌发酵产γ-PGA的最佳条件为:温度37.5 ℃,pH7.48,转速240 r/min,底物浓度52.70 g/L,摇瓶发酵36 h,γ-PGA的产量达到24.82 g/L,γ-PGA转化率为47.10%,比优化前提高了25.19%。结论:采用响应面法优化得到的发酵条件方便可行,利于γ-PGA的进一步开发利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号