首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Epsilonproteobacteria are widely distributed in marine, freshwater, and terrestrial environments, although most well-studied groups are from hydrothermal vents and the human intestinal tract. The environmental variables that control epsilonproteobacterial communities in sulfidic terrestrial environments, however, are poorly understood. Here, the environmental variables that influence epsilonproteobacterial community composition in geographically separated sulfidic caves and springs were determined by coarse and fine-scale approaches: denaturing gradient gel electrophoresis profiling of 23S rRNA PCR amplicons and clone library sequencing of the 16S-ITS-23S rRNA operon. Sequences retrieved from this study were not closely related to cultured representatives, indicating that existing culture collections do not adequately capture the diversity of terrestrial Epsilonproteobacteria. Comparisons of 16S-ITS-23S rRNA operon sequences from four sites revealed that some distant communities (> 8000 km) share closely related populations of Epsilonproteobacteria, while other sites have nearly clonal and phylogenetically distinct populations. Statistical evaluations of sequence data reveal that multiple environmental variables (e.g. temperature, pH, salinity, dissolved oxygen, and bicarbonate concentrations) influence Epsilonproteobacteria community composition. Locations with clonal populations tended to be from higher temperatures and intermediate dissolved oxygen concentrations. rRNA operon sequences outside of the 16S rRNA gene may be critical to recognizing environmental drivers of epsilonproteobacterial community composition.  相似文献   

2.
【目的】找到适宜的16S rRNA基因通用引物应用策略,应对复杂环境微生物多样性调查,尤其目前高速发展的高通量测序技术带来的巨大挑战。【方法】用Oligocheck软件分别将两对应试的古菌16S rRNA基因通用引物与RDP(Ribosomal database project)数据库中古菌16S rRNA基因序列进行匹配比对。用两对应试引物分别构建海洋沉积物样品的古菌16S rRNA基因文库。【结果】软件匹配结果显示引物f109/r958与目的基因的匹配程度高于引物f21/r958。该结果与古菌16S rRNA基因文库RFLP分析、古菌多样性指数分析结果相吻合。数据还表明,2对引物的综合文库能更好满足该沉积物样品的古菌多样性分析。【结论】选用与数据库中目的基因匹配性高的通用引物和多个引物的联合使用,可以有效提高环境样品微生物多样性调查的分辨率。  相似文献   

3.
Operational taxonomic units (OTUs) are conventionally defined at a phylogenetic distance (0.03—species, 0.05—genus, 0.10—family) based on full-length 16S rRNA gene sequences. However, partial sequences (700 bp or shorter) have been used in most studies. This discord may affect analysis of diversity and species richness because sequence divergence is not distributed evenly along the 16S rRNA gene. In this study, we compared a set each of bacterial and archaeal 16S rRNA gene sequences of nearly full length with multiple sets of different partial 16S rRNA gene sequences derived therefrom (approximately 440-700 bp), at conventional and alternative distance levels. Our objective was to identify partial sequence region(s) and distance level(s) that allow more accurate phylogenetic analysis of partial 16S rRNA genes. Our results showed that no partial sequence region could estimate OTU richness or define OTUs as reliably as nearly full-length genes. However, the V1-V4 regions can provide more accurate estimates than others. For analysis of archaea, we recommend the V1-V3 and the V4-V7 regions and clustering of species-level OTUs at 0.03 and 0.02 distances, respectively. For analysis of bacteria, the V1-V3 and the V1-V4 regions should be targeted, with species-level OTUs being clustered at 0.04 distance in both cases.  相似文献   

4.
As an evolutionary marker, 23S ribosomal RNA (rRNA) offers more diagnostic sequence stretches and greater sequence variation than 16S rRNA. However, 23S rRNA is still not as widely used. Based on 80 metagenome samples from the Global Ocean Sampling (GOS) Expedition, the usefulness and taxonomic resolution of 23S rRNA were compared to those of 16S rRNA. Since 23S rRNA is approximately twice as large as 16S rRNA, twice as many 23S rRNA gene fragments were retrieved from the GOS reads than 16S rRNA gene fragments, with 23S rRNA gene fragments being generally about 100 bp longer. Datasets for 16S and 23S rRNA sequences revealed similar relative abundances for major marine bacterial and archaeal taxa. However, 16S rRNA sequences had a better taxonomic resolution due to their significantly larger reference database.Reevaluation of the specificity of previously published PCR amplification primers and group specific fluorescence in situ hybridization probes on this metagenomic set of non-amplified 23S rRNA sequences revealed that out of 16 primers investigated, only two had more than 90% target group coverage. Evaluations of two probes, BET42a and GAM42a, were in accordance with previous evaluations, with a discrepancy in the target group coverage of the GAM42a probe when evaluated against the GOS metagenomic dataset.  相似文献   

5.
Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs). Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.  相似文献   

6.
DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important.  相似文献   

7.
To study how archaeal community responds to environmental changes, we investigated archaeal community structures in waters of three Tibetan saline lakes in northwestern China (Gahai, Xiaochaidan, and Charhan Lakes) with 16S rRNA gene phylogenetic analysis. Temperature, pH, and water chemistry (major anions and cations) of the lakes were measured. Three archaeal clone libraries were constructed with a total of 297 sequences. Incorporating our previous data obtained from other lakes on the Tibetan Plateau, we performed statistical analyses to identify dominant environmental parameters that could account for the observed variations in archaeal community structure. We concluded that salinity and water chemistry (Na and bicarbonate concentration in particular) played an important role in shaping archaeal community. In particular, the relative abundance of archaeal 16S rRNA genes affiliated with the Halobacteriales of the Euryarchaeota increased with salinity, whereas that of crenarchaeotal 16S rRNA gene sequences showed the opposite trend. Crenarchaeotal 16S rRNA gene sequences were retrieved from lake waters with salinity up to 28.3%. These results have important implications for our understanding of response of archaeal community to environmental changes in high-altitude lake ecosystems.  相似文献   

8.
9.
Anaplasma phagocytophilum is an emerging tick-borne pathogen. Great genetic diversity of A. phagocytophilum has been described in animals and ticks. The present study is focused on the genetic variability of the groESL operon of A. phagocytophilum in human patients in Slovenia. During 1996–2008, there were 66 serologically confirmed patients with human granulocytic anaplasmosis. Of these, 46 were tested with a screening PCR for a small part of the 16S rRNA gene of A. phagocytophilum and 28 (60.9%) were positive. Positive samples were additionally tested with a PCR targeting the groESL operon and a larger fragment of the 16S rRNA gene. All amplicons were further sequenced and analyzed. The homology search and the alignment of the groESL sequences showed only one genetic variant. Sequence analysis of the 16S rRNA gene revealed 100% identity among amplicons. Slovenia is a small country with diverse climate, vegetation, and animal representatives. In previous studies in deer, dogs, and ticks, great diversity of the groESL operon was found. In contrast, in wild boar and in human patients from this study, only one genetic variant was detected. The results suggest that only one genetic variant might be pathogenic for humans or is competent enough to replicate in humans. To support this theory, other genetic markers and further studies need to be performed.  相似文献   

10.
The Nanoarchaeota, proposed as the fourth sub-division of the Archaea in 2002, are known from a single isolate, Nanoarchaeum equitans, which exists in a symbiotic association with the hyperthermophilic Crenarchaeote, Ignicoccus. N. equitans fails to amplify with standard archaeal 16S PCR primers and can only be amplified using specifically designed primers. We have designed a new set of universal archaeal primers that amplify the 16S rRNA gene of all four archaeal sub-divisions, and present two new sets of Nanoarchaeota-specific primers based on all known nanoarchaeal 16S rRNA gene sequences. These primers can be used to detect N. equitans and have generated nanoarchaeal amplicons from community DNA extracted from Chinese, New Zealand, Chilean and Tibetan hydrothermal sites. Sequence analysis indicates that these environments harbour novel nanoarchaeal phylotypes, which, however, do not cluster into clear phylogeographical clades. Mesophilic hypersaline environments from Inner Mongolia and South Africa were analysed using the nanoarchaeal-specific primers and found to contain a number of nanoarchaeal phylotypes. These results suggest that nanoarchaeotes are not strictly hyperthermophilic organisms, are not restricted to hyperthermophilic hosts and may be found in a large range of environmental conditions.  相似文献   

11.
12.
太湖竺山湾沉积物中氨氧化原核生物的垂直分布与多样性   总被引:8,自引:0,他引:8  
原核生物驱动的氨氧化过程对于富营养化湖泊的氮循环具有重要意义。为了解太湖藻型湖区沉积物中氨氧化原核生物的垂直分布和多样性特征,采用分子生态学方法,对竺山湾沉积物剖面中氨单加氧酶基因(amoA)或16S rRNA基因等特征分子标记的变化和序列特征进行了分析。结果表明,氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)共存于沉积物各层。AOB的优势种在5cm深度以下发生明显改变,这可能与沉积物氧化还原电位及铵态氮的变化有关;所有细菌amoA序列均属亚硝化单胞菌(Nitrosomonas)。AOA群落结构自表层至7cm深度变化不大,所有古菌amoA序列分属泉古菌CG1.1b和CG1.1a两大类群,这可能与太湖形成历史上的海陆交替过程有关。此外,沉积物各层均未发现典型厌氧氨氧化(anaerobic ammonium oxidation,anammox)细菌16S rRNA基因序列。这些发现丰富了对太湖藻型湖区氨氧化原核生物分布、多样性及环境调控原理的认识,对理解富营养化湖泊氨氧化规律、认识湖泊生态系统氮循环功能具有借鉴意义。  相似文献   

13.
14.
Kang YJ  Cheng J  Mei LJ  Hu J  Piao Z  Yin SX 《Mikrobiologiia》2010,79(5):664-671
The use of 16S rRNA gene has been a "golden" method to determine the diversity of microbial communities in environmental samples, phylogenetic relationships of prokaryotes and taxonomic position of newly isolated organisms. However due to the presence of multiple heterogeneous 16S rRNA gene copies in many strains, the interpretation of microbial ecology via 16S rRNA sequences is complicated. Purpose of present paper is to demonstrate the extent to which the multiple heterogeneous 16S rRNA gene copies affect RFLP patterns and DGG E profiles by using the genome database. In present genome database, there are 782 bacterial strains in total whose genomes have been completely sequenced and annotated. Among the total strains, 639 strains (82%) possess multiple 16S rRNA gene copies, 415 strains (53%) whose multiple copies are heterogeneous in sequences as revealed by alignment, 236 strains (30%) whose multiple copies show different restrict patterns by CSP61 + Hinfl, MspI + Rsal or HhaI as analyzed in silico. Polymorphisms of the multiple copies in certain strains were further characterized by G + C% and phylogentic distances based on the sequences of V3 region, which are linked to DGGE patters. Polymorphisms of a few strains were shown as examples. Using artificial communities, it is demonstrated that the presence of multiple heterogeneous 16S rRNA gene copies potentially leads to over-estimation of the diversity of a community. It is suggested that care must be taken when interpreting 16S rRNA-based RFLP and DGGE data and profiling an environmental community.  相似文献   

15.
16.
17.
The diversity of Archaea in anaerobic digesters was characterized by strand conformation polymorphism (SSCP) analysis and the sequencing of 16S rDNA genes. The 44 digesters sampled, located in eight different countries, treated effluents from agriculture, the food processing and petro-chemical industries, pulp and paper plant, breweries, slaughterhouses and municipal waste. All the existing processes were represented among the samples (fixed-film, fluidized bed, stirred-tank, UASB, sequential batch reactor, lagoon). Single strand conformation polymorphism analysis targeting the V3 region of 16S rDNA revealed between four to six distinct archaeal peaks per digester. The diversity of dominant Archaea in the 44 digesters was estimated as 23 different 16S rDNA sequences. Cloning of archaeal 16S rRNA genes from 11 distinct total genomic DNA, screening of clones by SSCP and the sequencing of 170 of them made it possible to characterize these SSCP peaks. All the sequences retrieved were members of the Euryarchaeaota subdomain. Furthermore, most of the sequences retrieved were very close to already known and cultivated strains or to environmental clones. The most frequent archaeal sequences were close to Methanosaeta concilii and to a 16S rDNA clone vadinDC06 located in the Methanobacterium clade (84% and 73% of digesters respectively). The other sequences were members of the Methanobacteriales and the Methanomicrobiales families. Only one sequence was far from any sequence of the database and it could be grouped with several sequences of environmental clones. Each digester harboured between two to nine archaeal sequences with only one of them corresponding to a putative acetate-utilizing species. Furthermore, the process in the digesters appeared to play a part in the distribution of archaeal diversity.  相似文献   

18.
Bacterial and archaeal community structures and diversity of three different sedimentary environments (BH1A, BH2A and BH3A) in the acid pit lake of a chalcopyrite mine at Touro (Spain) were determined by 16S rRNA gene PCR-DGGE and sequencing of clone libraries. DGGE of bacterial and archaeal amplicons showed that the sediments harbor different communities. Bacterial 16S rRNA gene sequences were assigned to Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Proteobacteria, Chloroflexi and uncultured bacteria, after clustering into 42 operational taxonomic units (OTUs). OTU 2 represented approximately 37, 42 and 37 % of all sequences from sediments BH1A, BH2A and BH3A, respectively, and was phylogenetically related to uncultured Chloroflexi. Remaining OTUs were phylogenetically related to heterotrophic bacteria, including representatives of Ferrithrix and Acidobacterium genera. Archaeal 16S rRNA gene sequences were clustered into 54 OTUs. Most of the sequences from the BH1A sediment were assigned to Euryarchaeota, whereas those from BH2A sediment were assigned to Crenarchaeota. The majority of the sequences from BH3A sediment were assigned to unclassified Archaea, and showed similarities to uncultured and unclassified environmental clones. No sequences related to Acidithiobacillus and Leptospirillum, commonly associated with acid mine drainage, were detected in this study.  相似文献   

19.
20.
Obtaining full-length 16S rRNA gene sequences is important for generating accurate taxonomy assignments of bacteria, which normally is realized via clone library construction. However, the application of clone library has been hindered due to its limitations in sample throughput and in capturing minor populations (<1?% of total microorganisms). To overcome these limitations, a new strategy, two-step denaturing gradient gel electrophoresis (2S-DGGE), is developed to obtain full-length 16S rRNA gene sequences. 2S-DGGE can compare microbial communities based on its first-round DGGE profiles and generate partial 16S rRNA gene sequences (8-534?bp, Escherichia coli numbering). Then, strain-specific primers can be designed based on sequence information of bacteria of interest to PCR amplify their remaining 16S rRNA gene sequences (515-1541?bps, E. coli numbering). The second-round DGGE can confirm DNA sequence purity of these PCR products. Finally, the full-length 16S rRNA gene sequences can be obtained through combining the two partial DNA sequences. By employing 2S-DGGE, taxonomies of a group of dehalogenating bacteria have been assigned based on their full-length 16S rRNA gene sequences, several of which existed in dehalogenating microcosms as minor populations. In all, 2S-DGGE can be utilized as a medium throughput method for taxonomic identification of interested/minor populations from single or multiple microbial consortia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号