首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A three-phase hydro-mechanical model for hydraulic fracturing is proposed. Three phases include: porous solid, fracturing fluid and host fluid. Discontinuity is handled using extended finite element method (XFEM) while cohesive crack model is used as fracturing criterion. Flow through fracture is defined as one-dimensional laminar flow, and flow through porous medium (host reservoir) is defined as two-dimensional Darcy flow. Coupling between two fluids in each space, fracture and pore, is captured through capillary pressure–saturation relationship, while the identical fluids in fracture and pore are coupled through a so-called leak-off mass transfer term. Coupling between fluids and deformation is captured through compatibility of volumetric strain of fluids within fracture and pore, and volumetric strain of the matrix. Spatial and temporal discretisation is achieved using the standard Galerkin method and the finite difference technique, respectively. The model is verified against analytical solutions available from literature. The leaking of fracturing fluid into the medium and suction of porous fluid into the fracture around the tip, are investigated. Sensitivity analyses are carried out for cases with slow and fast injection rates. It is shown that the results by single-phase flow may underestimate the leak-off.  相似文献   

2.
A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N. The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the flow behaviour of certain non-Newtonian fluids through a porous medium. A generalized Bingham rheological model of power-law in the presence of a yield stress has been considered. Several problems of fluid mechanics, which appear currently in oil reservoir engineering, have been investigated and the rheological behaviour effect has been emphasized. The short time solutions have been formulated in terms of a moving boundary problem. The approximate solutions in a closed formwere obtained by means of the integral method. Several dimensionless groups have been found to be relevant in evaluating the rheological effect on the steady and unsteady and unsteady flow behaviour. The deviation from Newtonian flow behaviour has been illustrated using several numerical examples.  相似文献   

4.
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of finite element simulation of incompressible fluid flow in porous medium is considered. The porous medium is characterized by the X‐ray microtomography technique in three dimensions. The finite calculus‐based stabilization technique is reviewed to implement the equal order finite element interpolation functions for both velocity and pressure. A noble preconditioner, the nodal block diagonal preconditioner, is considered whose performance is thoroughly investigated. Combining this preconditioner with a standard iterative solver during the computational homogenization procedure, it is possible to carry out the large‐scale fluid flow simulation for estimating permeability of the porous medium with reasonable accuracy and reliability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
热液汉体泵吸上浸管流动力学模拟及其预测意义   总被引:16,自引:1,他引:15  
赵伦山  岑况 《地学前缘》2000,7(1):205-215
地球流体相在各种地质过程中的行为和作用,是地球物质科学的核心课题。通过对山西义兴寨脉状金矿热液流体上侵动力学的模拟计算证明,构造泵吸驱动的矿液流动具有有压管流的性质,并探索引入柏努利方程对其流动状态进行描述。论证了地质流体因其性质和所处地质环境的不同,可划分为多孔介质中的渗流和较宽阔裂隙中的管流(流动)两种。赋 于地壳中深部或由岩浆冷却分异形成的成矿流体,在张前性断裂活动中,主要由构造泵吸机制驱使  相似文献   

7.
热液流体泵吸上侵管流动力学模拟及其预测意义   总被引:1,自引:0,他引:1  
地球流体相在各种地质过程中的行为和作用 ,是地球物质科学的核心课题。通过对山西义兴寨脉状金矿热液流体上侵动力学的模拟计算证明 ,构造泵吸驱动的矿液流动具有有压管流的性质 ,并探索引入柏努利方程对其流动状态进行描述。论证了地质流体因其性质和所处地质环境的不同 ,可划分为多孔介质中的渗流和较宽阔裂隙中的管流 (流动 )两种。赋存于地壳中深部或由岩浆冷却分异形成的成矿流体 ,在张剪性断裂活动中 ,主要由构造泵吸机制驱使其上侵成矿。热液在相对封闭 (未喷出地表 )的较宽阔的断裂系统中受应力驱动上侵流动 ,其性质接近于流体力学中的有压管流 ,可以用柏努利方程进行描述。推导出了描述热液管流上侵动力学特征的柏努利方程关系式 ,表明热液的流速与所处构造压力差、流体的性质 (温度和密度等 ) ,以及流动通道的结构特征有关。对义兴寨脉状金矿进行的计算结果证明 ,热液上侵流速场的空间变化与金矿化分布格局相吻合 ,流体的高流速地段指示含矿石英脉密集区 ,因此具有成矿预测意义。针对热液管流上侵过程建立的动力学总方程中 ,每一个变量都有明确的地质意义 ,并可以在矿区实际测量 ;绘制的几组理论关系曲线有助于具体分析各种地质和地球化学条件对成矿的控制作用。  相似文献   

8.
An iterative method is presented for solving a fully coupled and implicit formulation of fluid flow in a porous medium. The mathematical model describes a set of fully coupled three-phase flow of compressible and immiscible fluids in a saturated oil reservoir. The finite element method is applied to obtain the simultaneous solution (SS) for the resulting highly non-linear partial differential equations where fluid pressures are the primary unknowns. The final discretized equations are solved iteratively by using a fully implicit numerical scheme. Several examples, illustrating the use of the present model, are described. The increased stability achieved with this scheme has permitted the use of larger time steps with smaller material balance errors.  相似文献   

9.
A numerical simulation is presented for three-dimensional three-phase fluid flow in a deforming saturated oil reservoir. The mathematical formulation describes a fully coupled governing equation systen which consists of the equilibrium and continuity equations for three immiscible fluids flowing in a porous medium. An elastoplastic soil model, based on a Mohr–Coulomb yield surface, is used. The finite element method is applied to obtain simultaneous solutions to the governing equations where displacement and fluid pressures are the primary unknowns. The final discretized equations are solved by a direct solver using fully implicit procedures. The developed model is used to investigate the problems of three-phase fluid flow in a deforming saturated oil reservoir.  相似文献   

10.
Modeling the flow in highly fractured porous media by finite element method (FEM) has met two difficulties: mesh generation for fractured domains and a rigorous formulation of the flow problem accounting for fracture/matrix, fracture/fracture, and fracture/boundary fluid mass exchanges. Based on the recent theoretical progress for mass balance conditions in multifractured porous bodies, the governing equations for coupled flow and deformation in these bodies are first established in this paper. A weak formulation for this problem is then established allowing to build a FEM. Taking benefit from recent development of mesh‐generating tools for fractured media, this weak formulation has been implemented in a numerical code and applied to some typical problems of hydromechanical coupling in fractured porous media. It is shown that in this way, the FEM that has proved its efficiency to model hydromechanical phenomena in porous media is extended with all its performances (calculation time, couplings, and nonlinearities) to fractured porous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a fracture mapping (FM) approach combined with the extended finite element method (XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures are not part of the finite element mesh. A key feature of FM‐XFEM is its ability to model discontinuities in the domain independently of the computational mesh. The proposed FM approach is a continuum‐based approach that is used to model the flow interaction between the porous matrix and existing fractures via a transfer function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture flow model, the fracture representation is not meshed along with the computational domain. Consequently, the method is able to determine the influence of fractures on fluid flow within a fractured domain without the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment functions are added to the standard finite element approximation to adequately resolve discontinuous fields within the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
13.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

14.
Numerical simulation of fluid flow in a hydrocarbon reservoir has to account for the presence of wells. The pressure of a grid cell containing a well is different from the average pressure in that cell and different from the bottom-hole pressure for the well [17]. This paper presents a study of grid pressures obtained from the simulation of single phase flow through an isotropic porous medium using different numerical methods. Well equations are proposed for Darcy flow with Galerkin finite elements and mixed finite elements. Furthermore, high velocity (non-Darcy) flow well equations are developed for cell-centered finite difference, Galerkin finite element and mixed finite element techniques.  相似文献   

15.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A key ingredient in simulation of flow in porous media is accurate determination of the velocities that drive the flow. Large‐scale irregularities of the geology (faults, fractures, and layers) suggest the use of irregular grids in simulation. This paper presents a control‐volume mixed finite element method that provides a simple, systematic, easily implemented procedure for obtaining accurate velocity approximations on irregular (i.e., distorted logically rectangular) block‐centered quadrilateral grids. The control‐volume formulation of Darcy’s law can be viewed as a discretization into element‐sized “tanks” with imposed pressures at the ends, giving a local discrete Darcy law analogous to the block‐by‐block conservation in the usual mixed discretization of the mass‐conservation equation. Numerical results in two dimensions show second‐order convergence in the velocity, even with discontinuous anisotropic permeability on an irregular grid. The method extends readily to three dimensions.  相似文献   

17.
In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic properties of the porous medium, i.e. saturation, relative permeability and capillary pressure. It is worth mentioning that the imposition of various boundary conditions is feasible notwithstanding the choice of the primary variables. The modified Pastor–Zienkiewicz generalized constitutive model is introduced into the mathematical formulation to simulate the mechanical behavior of the unsaturated soil. The accuracy of the proposed mathematical model for analyzing coupled fluid flows in porous media is verified by the resolution of several numerical examples for which previous solutions are known. Finally, the performance of the computational algorithm in modeling of large-scale porous media problems including the large elasto-plastic deformations is demonstrated through the fully coupled analysis of the failure of two earth and rockfill dams. Furthermore, the three-phase model is compared to its simplified one which simulates the unsaturated porous medium as a two-phase one with static air phase. The paper illustrates the shortcomings of the commonly used simplified approach in the context of seismic analysis of two earth and rockfill dams. It is shown that accounting the pore air as an independent phase significantly influences the unsaturated soil behavior.  相似文献   

18.
This paper analyses the problem of a fluid‐driven fracture propagating in an impermeable, linear elastic rock with finite toughness. The fracture is driven by injection of an incompressible viscous fluid with power‐law rheology. The relation between the fracture opening and the internal fluid pressure and the fracture propagation in mobile equilibrium are described by equations of linear elastic fracture mechanics (LEFM), and the flow of fluid inside the fracture is governed by the lubrication theory. It is shown that for shear‐thinning fracturing fluids, the fracture propagation regime evolves in time from the toughness‐ to the viscosity‐dominated regime. In the former, dissipation in the viscous fluid flow is negligible compared to the dissipation in extending the fracture in the rock, and in the later, the opposite holds. Corresponding self‐similar asymptotic solutions are given by the zero‐viscosity and zero‐toughness (J. Numer. Anal. Meth. Geomech. 2002; 26 :579–604) solutions, respectively. A transient solution in terms of the crack length, the fracture opening, and the net fluid pressure, which describes the fracture evolution from the early‐time (toughness‐dominated) to the large‐time (viscosity‐dominated) asymptote is presented and some of the implications for the practical range of parameters are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Aquifer contamination by organic chemicals in subsurface flow through soils due to leaking underground storage tanks filled with organic fluids is an important groundwater pollution problem. The problem involves transport of a chemical pollutant through soils via flow of three immiscible fluid phases: namely air, water and an organic fluid. In this paper, assuming the air phase is under constant atmospheric pressure, the flow field is described by two coupled equations for the water and the organic fluid flow taking interphase mass transfer into account. The transport equations for the contaminant in all the three phases are derived and assuming partition equilibrium coefficients, a single convective – dispersive mass transport equation is obtained. A finite element formulation corresponding to the coupled differential equations governing flow and mass transport in the three fluid phase porous medium system with constant air phase pressure is presented. Relevant constitutive relationships for fluid conductivities and saturations as function of fluid pressures lead to non-linear material coefficients in the formulation. A general time-integration scheme and iteration by a modified Picard method to handle the non-linear properties are used to solve the resulting finite element equations. Laboratory tests were conducted on a soil column initially saturated with water and displaced by p-cymene (a benzene-derivative hydrocarbon) under constant pressure. The same experimental procedure is simulated by the finite element programme to observe the numerical model behaviour and compare the results with those obtained in the tests. The numerical data agreed well with the observed outflow data, and thus validating the formulation. A hypothetical field case involving leakage of organic fluid in a buried underground storage tank and the subsequent transport of an organic compound (benzene) is analysed and the nature of the plume spread is discussed.  相似文献   

20.
随着扩展有限元理论的深入研究,利用扩展有限元方法模拟水力压裂具有了一定的可操作性。相比于常规有限元方法,XFEM方法具有计算结果精度高和计算量小的优点。但是,如何模拟射孔孔眼、如何模拟流体与岩石相互作用以及分析水力裂缝的扩展规律仍然是难题。以研究水力压裂裂缝扩展规律为目的,建立了岩石多孔介质应力平衡方程、流体渗流连续性方程和边界条件。通过有限元离散化方法对耦合方程矩阵进行处理。通过富集函数定义初始裂缝(射孔孔眼),选择最大主应力及损伤变量D分别作为裂缝起裂和扩展判定准则,利用水平集方法模拟水力裂缝扩展过程。数值模拟结果显示:增加射孔方位角、压裂液排量和减小水平地应力差,起裂压力上升;黏度对起裂压力无明显影响。增加射孔方位角、压裂液排量、黏度和减小水平地应力差值有助于裂缝宽度的增加。增加水平地应力差值、压裂液排量和减小射孔方位角以及压裂液黏度有助于裂缝长度增加,反之亦然。基于ABAQUS的水力裂缝扩展有限元法可对不同井型和诸多储层物性参数及压裂施工参数进行分析,且裂缝形态逼真,裂缝面凹凸程度清晰,结果准确。此研究可作为一种简便有效研究水力压裂裂缝扩展规律的方法为油田水力压裂设计与施工提供参考与依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号