首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel dissymmetric gemini cationics surfactants was synthesized by three-step reactions. The dissymmetric gemini surfactants contain a dodecanoic acid dimethylethylamine ester as the constant cationic part on one side of the hydroxypropyl center and a similar other cationic part, but with a different acid length (from octanoic to palmitic), on the other side. The critical micelle concentration (CMC) and the effectiveness of surface tension reduction (γ CMC) were determined. The surface tension measurements of dissymmetric gemini surfactants showed good water solubility, and low CMC had great efficiency in lowering the surface tension and a strong adsorption at the air/water interface. The CMC was observed to increase initially with the increase of the ester bond alkyl group. They also showed good foaming properties and wetting capabilites.  相似文献   

2.
A novel series of cationic dimeric surfactants was prepared involving the ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with tertiary alkyl amines. The synthesized compounds were obtained in high purity by a simple purification procedure using column chromatography. The critical micelle concentration (CMC), effectiveness of surface tension reduction (??CMC), surface excess concentration (??), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the anthelmintic activities against the rodent gastrointestinal nematode Heligmosomoides polygyrus bakeri, in vitro for cationic gemini compounds. In the series of five tested cationic compounds (4a?Ce), three of them (4a, 4b and 4d) were shown to have an excellent anthelmintic activity in vitro at different concentrations. The anthelmintic activity was found to be dependent on the type of cationic compound, concentration and incubation time. The cationic di-C12 (4a) derivate of the series was the best anthelmintic agent, its use was optimal at a minimum concentration of 50?ppm and with 60?min of incubation.  相似文献   

3.
A novel homologous series of 1-N-l-phenylalanine-glycerol ether surfactants was synthesized in satisfactory yields via reaction of epichlorohydrin with aliphatic alcohols with alkyl chains of 10–15 carbon atoms. Structural assignment of the new compounds was made on the basis of elemental analysis and spectroscopic data. Critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN/m (pC20), and the interfacial area occupied by the surfactant molecules (Amin) were determined from aqueous surface tension measurements using the Wilhelmy plate technique.  相似文献   

4.
A series of new cationic surfactants, bis-quaternary ammonium salts, were prepared from tert-alkylamine and a product of the reaction of epichlorohydrin with decyl- and dodecylamine, and their surface-active properties were measured. Specifically, the critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), surface excess concentration (Γ), area per molecule at the interface (A), and standard free energies of adsorption (ΔG ads o) and of micellization (ΔG mic o) were determined. All these surfactants showed good water solubility and low CMC, more than one order of magnitude lower than those of corresponding mono-alkylammonium salts. They also showed good foaming properties but worse wetting capabilities. Many of these compounds had antimicrobial activities against gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans), but they were not active against molds.  相似文献   

5.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

6.
Poly(ethylene terephthalate) waste was recycled to oligomers in the presence of diethanolamine and manganese acetate as a catalyst. The oligomers produced were reacted with stearic acid and poly(ethylene glycol) with different number average molecular weights of 400, 1000 and 4000 g mol?1 to produce nonionic polymeric surfactants having different hydrophile–hydrophobe balances. The surface tension, critical micelle concentration and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin) and the effectiveness of surface tension reduction (ΠCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process were calculated and are discussed. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
Bis(sulfonate) types of amphipathic compounds with three long- chain alkyl groups were prepared by the reaction ofN- (long- chain acyl)diethanolamine diglycidyl ethers with long- chain fatty alcohols, followed by the reaction with propanesultone. The diglycidyl ethers were easily obtained from the correspondingN- acyldiethanolamines and epichlorohydrin in the presence of a phasetransfer catalyst. The same types of compounds with two longchain alkyl groups were also prepared from Nacetyldiethanolamine according to similar procedures. All these new double- or triple- chain surfactants were soluble in water and showed much better micelle forming and ability to lower surface tension than general types of single- chain surfactants with one sulfonate group. The critical micelle concentration (CMC) and γCMC values of the triple- chain compounds were still much smaller than those of the corresponding double- chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface (pC20) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime- soap dispersing ability were measured. To whom correspondence should be addressed at Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565, Japan.  相似文献   

8.
In this study, a series of cationic silicone surfactants SiQCnCl containing ester groups and double long-chain alkyls (n = 9, 11, 13, 15, and 17) were synthesized by microwave irradiation and characterized using infrared Fourier transform (FTIR), 1H nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA). Surface activity and adsorption of these surfactants were investigated by measuring the equilibrium surface tension. The critical micelle concentration (CMC) decreased with increasing alkyl length of SiQCnCl at 25 °C and so did the corresponding surface tension at the CMC (γCMC ). The aggregation behavior in aqueous solutions was also investigated systemically through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Spherical or ellipsoidal-like aggregates with diameters ranging from 300 to 900 nm were observed. It is also shown that the cationic silicone surfactants exhibit certain antibacterial properties against Staphylococcus aureus but slightly poor to Escherichia coli. The morphological structure of SiQC15Cl-treated cotton fabrics was observed using scanning electron microscopy (SEM), which showed that the surface became neat and smooth. What is more, the finished cotton fabrics maintained some antibacterial properties with improved softness, which may provide a more comfortable and healthy lifestyle. This work may also be helpful to the design and application of functional cationic silicone surfactants.  相似文献   

9.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

10.
New cocogem surfactants were synthesized by interaction of dodecylisopropylol amine with dicarboxylic (oxalic, succinic, adipic, sebacic, tartaric, maleic, fumaric, isophthalic) acids. By tensiometric method, the surface activity of aqueous solutions of the synthesized cocogem surfactants at the border with air was studied and, by conductometric method, the specific electrical conductivity of these solutions was determined. The degree of counterion binding (β), critical micelle concentration (CMC), effectiveness of surface tension reduction (πCMC), surface excess concentration (Γmax), area per molecule at the interface (Amin), changes of Gibbs free energies of adsorption (ΔGad) and micellization (ΔGmic) have been calculated. The character of change of the colloidal-chemical indices depending on spacer-group nature and length has been clarified. So, with an elongation of the spacer group and when passing from cis-form to trans-form, the value of CMC decreases. The obtained cocogem surfactants exhibit a considerable bactericidal effectiveness against sulfate-reducing bacteria. The bactericide properties of the cocogem surfactants containing in the spacer chain a saturated hydrocarbon fragment and benzene ring are stronger than for the others.  相似文献   

11.
A homologous series of anionic surfactants, namely, sodium-N-(alkyloxycarbonyl) alanine (where alkyl=octyl-, dodecyl-, hexadecyl-, and octadecyl-) were synthesized having the formula: R-OCO-CH2NH-CH2-CH2-COONa. Surface properties of their solutions, including surface tension, critical micelle concentration, effectiveness, maximum surface excess, and minimum surface area, were investigated for different concentrations at 25°C. The effects of these surfactants on the solubilization of a polar and a nonpolar solute were studied. Standard free energies of micellization and adsorption were calculated for the prepared surfactants in aqueous solution.  相似文献   

12.
Synergism in mixed micelle formation and surface tension reduction efficiency and the ternary phase behavior of anionic surfactant (alcohol polyoxyethylene ether acetate containing 10 ethylene oxide group and a fatty chain of C16–18) with cationic surfactants (dodecyldimethylbenzyl ammonium chloride and lauryltrimethyl ammonium chloride) were investigated. Surface tension of the systems at different molar ratios was studied in detail and the interaction parameters of each system were calculated. The results show that both systems have lower values of critical micelle concentration (CMC) and γcmc than individual surfactants especially at equal ratio between cationic and anionic surfactants. Both systems present synergism in mixed micelle formation and surface tension reduction efficiency. The ternary phase behavior of the two systems was investigated using a polarized microscope. The micellar phase and lamellar phase were observed in both systems and the coexisting phase was only observed in the dodecyldimethylbenzyl ammonium chloride system.  相似文献   

13.
The synthesis and characterization of a series of polymerizable surfactants based on alkyl phenol ethoxylate backbone and carboxylic or anhydride chain ends were investigated. Surface activities of these polymerizable surfactants were investigated to correlate their structure and their performances. The new bifunctional surfmers were prepared by reacting polyoxyethylene 4-nonyl-2-propylene-phenol nonionic reactive surfactants with maleic anhydride. The chemical structure of the prepared surfactants was characterized by 13C and 1H NMR analyses. The surface activities of the modified polymerizable surfactants were measured from the adsorption isotherm measurements which were determined from the relationship between the concentrations and surface tension of surfactants in aqueous medium at different temperatures. Critical micelle concentration (CMC) values were determined for water soluble surfactants. It was found that CMC decreases with the incorporation of the anhydride and acid groups in the chemical structure of polyoxyethylene 4-nonyl -2-propylene-phenol nonionic surfactant. surface-active parameters such as area per molecule at the interface (A min), surface excess concentration (Γmax) and the effectiveness of surface tension reduction (πCMC) were measured from the adsorption isotherms of the modified surfactants. Some thermodynamic data for the adsorption process were calculated and discussed. The data indicated that the new surfmers are more reactive than the simple polyoxyethylene 4-nonyl-2-propylene-phenol and more adsorbed at interfaces. We have performed a preliminary experiment to explore the emulsification efficiency of the newly synthesized reactive surfactants in equal volume oil–water emulsions. Different emulsion types and stabilities were obtained.  相似文献   

14.
The chemical structure of the prepared cationic surfactants which formed through condensation reaction between dimethylaminopropylamine (DMAPA) and butyraldehyde then quaternized by three fatty alkyl bromide was confirmed by FTIR, 1HNMR and mass spectroscopy. The chemical structure of prepared compounds has an effect on surface properties. By increasing the hydrophobic chain length, the values of CMC and Гmax decrease while Amin value was increased. The Thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the prepared cationic surfactants tend to adsorb at surface, then it aggregate to form micelle. The prepared surfactants showed good biological activity against Gram-positive and negative bacteria and fungi. The prepared cationic surfactant showed aggressive effect on the sulfate reducing bacteria growth.  相似文献   

15.
A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.  相似文献   

16.
A series of cetyl alcohol based anionic bis‐sulfosuccinate gemini surfactants (BSGSCA1,4; BSGSCA1,6 and BSGSCA1,8) with different spacer lengths was prepared using dibromoalkanes. The surfactant structure was elucidated using elemental analysis, Fourier transform infrared spectroscopy (FT‐IR) and nuclear magnetic resonance spectroscopy (NMR). Surface tension measurements were used to determine the critical micelle concentration (CMC), the surface tension at the CMC (γCMC), surface pressure at the CMC (πCMC) and efficiency of adsorption (pC20). On the basis of surface studies, the CMC and γCMC decreases with increasing length of the spacer group. The micelle aggregation number, determined by fluorescence quenching studies, increases with increasing surfactant concentration above the CMC. The micropolarity in the micelle increases with increasing length of the spacer and decreases with increasing surfactant concentration.  相似文献   

17.
Three fluorinated cationic surfactants were prepared by condensing N-(2-bromoethyl)perfluoroalkylamides with stoichiometric amounts of pyridine, triethanolamine, and triethylamine to produce three quaternary ammonium salts. The surface and biocidal properties of these surfactants were investigated to find the relation between the structure of the hydrophilic portion of the compounds and their efficiency as biocides. The properties studied included critical micelle concentration (CMC), effectiveness (IICMC), surface excess concentration (Tmax), and area occupied by a molecule (Amin). Free energies of micellization (ΔG mic o) and adsorption (ΔG ads o) of the surfactants in aqueous solution were calculated. The minimal inhibitory concentrations of the prepared compounds were tested against five strains as representative group of microorganisms.  相似文献   

18.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

19.
Some alkylnaphthalene and alkylphenanthrene sulfonates were synthesized by means of a Wurtz–Fittig reaction. The HLB values for the prepared compounds were calculated, and the basic properties were studied in water at different temperatures, namely, 25, 35 and 45 °C. Through surface tension measurements, the following values were determined: the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC). The following values were calculated: area per molecule at the CMC (ACMC), standard free energy change of micellization (ΔG mic), standard free energy of adsorption (ΔG ad), and the efficiency of a surfactant in reducing surface tension (pC20). Furthermore, the partition coefficients of the synthesized compounds were also measured. The results show that n-alkylnaphthalene and n-alkylphenanthrene surfactants studied exhibit desirable properties that may be of value in some fields such as detergency. To confirm the detergency power of the prepared surfactants, some foam studies were performed.  相似文献   

20.
New amido‐amine‐based cationic gemini surfactants with flexible and rigid spacers and different hydrophobic tails were synthesized and characterized. These gemini surfactants were prepared by a modified procedure through amidation of long chain carboxylic acids using 3‐(dimethylamino)‐1‐propylamine followed by treatment with halohydrocarbons. The effect of the trans and cis conformation of the spacer double bond was investigated by means of critical micelle concentration, surface tension reduction, and thermal stability. The short‐term thermal stability of the gemini surfactants was assessed using thermogravimetric analysis (TGA) and the long‐term thermal stability was examined by a unique approach based on structure characterization techniques including NMR (1H and 13C) and FTIR analysis. TGA results demonstrated excellent short‐term thermal stability since no structure degradation was observed up to 200 °C. Structural characterization revealed impressive long‐term thermal stability of the gemini surfactants with no structure decomposition after exposing them to 90 °C for 10 days. The critical micelle concentration of gemini surfactants was found to be in the range of 0.77 × 10?4–3.61 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 30.34 to 38.12 mN m?1. The surfactant with the trans conformation of spacer double bond showed better surface properties compared to the surfactant with the cis conformation of spacer double bond. Similarly, increasing surfactant tail length and spacer length resulted in decreasing CMC values. Moreover, bromide counterion showed improved surface properties compared to chloride counterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号