首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands.  相似文献   

2.
The regulation of the central sigma-binding site was investigated using both in vitro and in vivo manipulations in conjunction with radioligand binding. The displacement of the binding of R(+)-[3H]3-[3-hydroxyphenyl]-N-(1-propyl)piperidine [R(+)-[3H]3-PPP] to cortical homogenates by a range of drugs was consistent with the site labelled being a sigma-receptor. (+)-SKF 10,047, (-)-SKF 10,047, (+/-)-cyclazocine, phencyclidine, and dexoxadrol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of less than 1. Further analysis employing nonlinear curve fitting techniques demonstrated that displacement data for these compounds were described better by a model whereby R(+)-[3H]3-PPP was displaced from two discrete sites; approximately 65% of the total sites were in the high-affinity state. In the presence of 10 mM Mg2+ and 0.3 mM GTP, displacement curves for (+)-SKF 10,047 and (+/-)-cyclazocine were shifted to the right. These findings were due to the shift of some 15% of the high-affinity binding sites to a low-affinity state. Saturation experiments revealed that 0.3 mM GTP acted competitively to decrease the affinity of R(+)-[3H]3-PPP for the sigma sites. The sigma-binding site was thus likely to be linked to a guanine nucleotide regulatory (G) protein. Thus sigma drugs could be subdivided on the basis of their GTP sensitivity and pseudo-Hill coefficients, and by analogy with other receptors R(+)-3-PPP, (+)-SKF 10,047, and (+/-)-cyclazocine, may be putative sigma-agonists. 1,3-Di(2-tolyl)guanidine (DTG), rimcazole, and haloperidol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of approximately unity and thus may be sigma-antagonists. Subchronic treatment with rimcazole was characterized by slight sedation and a concomitant up-regulation, with a decrease in the affinity, of sigma-binding sites. The schedule of rimcazole also increased dopamine turnover in the nucleus accumbens; both the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine ratio were elevated. DTG produced similar alterations to the binding parameters of the sigma-binding site; however, changes were not observed in general behavior or accumbal dopamine turnover. sigma-Receptors are likely to be linked to a G protein and are functionally involved in the CNS.  相似文献   

3.
Rimcazole (BW 234U) is a potential antipsychotic agent which in open-clinical trials appears to be effective in acute schizophrenic patients. In the present study, rimcazole was found to block the specific binding of [3H]-(+)-SKF 10,047 to sigma sites in rat and guinea pig brain (IC50 = 5.0 X 10(-7) M). The compound was 100 times weaker as a blocker of phencyclidine sites (IC50 = 4.3 X 10(-5) M). At 1 X 10(-5) M, rimcazole had only weak effects on mu, delta, kappa and epsilon opioid receptors. Scatchard analysis of the binding data from guinea pig brain revealed an apparent KD for [3H]-(+)-SKF 10,047 of 85 +/- 5 nM and a Bmax of 824 +/- 27 fmole/mg protein. In the presence of 5 X 10(-7) M BW 234U, the apparent KD was 165 +/- 35 nM, but the Bmax (892 +/- 146 fmoles/mg protein) was not affected. This suggests that rimcazole is a competitive inhibitor of sigma sites. The agent was also capable of blocking sigma sites in vivo (ID50 = 6 mg/kg i.p., mice) as judged by an in vivo sigma receptor binding assay. Thus, if the antipsychotic activity of rimcazole is confirmed in double-blind, placebo-controlled trials, it would be the first compound whose mechanism of antipsychotic activity may best be explained by a direct blockade of sigma sites and not by a direct blockade of dopamine (D2) receptors in brain.  相似文献   

4.
Mardon K  Kassiou M  Donald A 《Life sciences》1999,65(23):PL 281-PL 286
To study the effect of diabetes mellitus on the density of sigma receptors, in vitro binding experiments were conducted in whole brain homogenate membranes of 5-week and 10-week control rats and streptozotocin (STZ)-induced diabetic rats. sigma-1 Receptors were labelled with [3H](+)-pentazocine while sigma-2 receptors were labelled with [3H] 1,3-di-o-tolylguanidine (DTG) in the presence of 0.5 microM (+)-pentazocine to mask sigma-1 sites. Non-specific binding was determined in the presence of 20 microM haloperidol. Scatchard analysis revealed a 27% (p<0.01) decreased in sigma-1 receptor density and a 33% (p<0.01) decreased in sigma-2 receptor density in whole brain of 10-week STZ-diabetic rats. No statistically significant difference was found in the sigma receptor content of 5-week STZ-diabetic rats. These results provide evidence that neuronal sigma receptors are reduced in 10-week STZ-diabetic rats and suggest that changes in sigma receptors may play a role in diabetes related abnormalities. Further evaluation is required to determine whether changes observed in the brain are homogeneous for either or both sigma receptor subtypes as well as potential links between other CNS receptor changes previously observed in STZ-induced diabetic rats.  相似文献   

5.
Specific binding sites for [3H]-1,3 di-ortho-tolylguanidine ([3H]-DTG), a selective radiolabeled sigma receptor ligand, were detected and characterized in sheep pineal gland membranes. The binding of [3H]-DTG to sheep pineal membranes was rapid and reversible with a rate constant for association (K+1) at 25 degrees C of 0.0052 nM-1.min-1 and rate constant for dissociation (K-1) 0.0515 min-1, giving a Kd (K-1/K+1) of 9.9 nM. Saturation studies demonstrated that [3H]-DTG binds to a single class of sites with an affinity constant (Kd) of 27 +/- 3.4 nM, and a total binding capacity (Bmax) of 1.39 +/- 0.03 pmol/mg protein. Competition experiments showed that the relative order of potency of compounds for inhibition of [3H]-DTG binding to sheep pineal membranes was as follows: trifluoperazine = DTG greater than haloperidol greater than pentazocine greater than (+)-3-PPP greater than (+/-)SKF 10,047. Some steroids (testosterone, progesterone, deoxycorticosterone) previously reported to bind to the sigma site in brain membranes were very weak inhibitors of [3H]-DTG binding in the present study. The results indicate that [3H]-DTG binding sites having the characteristics of sigma receptors are present in sheep pineal gland. The physiological importance of these sites in regulating the synthesis of the pineal hormone melatonin awaits further study.  相似文献   

6.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

7.
Hormonal interactions with benzodiazepine binding sites in vitro   总被引:1,自引:0,他引:1  
Prostaglandin A1 and hormones like corticosteroids and DL-Thyroxin (T4) inhibit binding of [3H]RO 5-4864 and [3H] Clonazepam to their respective binding sites with inhibition constants in the low micromolar range. The corticosteroid Cortisone inhibits [3H] RO 5-4864, but not [3H] Clonazepam binding in a competitive manner with an inhibition constant of 4.3 +/- 0.7 microM, Prostaglandin A1 inhibits [3H] Clonazepam, but not [3H] RO 5-4864 binding in a competitive manner with an inhibition constant of 6 +/- 1.2 microM and DL-Thyroxin (T4) inhibits both [3H] RO 5-4864 and [3H] Clonazepam binding with inhibition constants of 12.1 +/- 2.2 and 1.6 +/- 0.4 microM respectively. While the inhibition of [3H] RO 5-4864 binding by DL-Thyroxin (T4) is competitive, the inhibition of [3H] Clonazepam binding is of the mixed type as indicated by Scatchard Plot.  相似文献   

8.
The potent antimuscarinic benzetimide and its resolved stereoisomers dexetimide and levetimide were tested for their affinities at sigma sites labelled by [3H](+)pentazocine or [3H]1,3-di(2-tolyl)guanidine. Levetimide was a potent and stereoselective inhibitor of [3H](+)pentazocine binding, with a Ki of 2.2 nM, while dexetimide was nine-fold less potent (Ki = 19 nM). Dexetimide and levetimide potently inhibited [3H]DTG binding although without stereoselectivity (Ki values of 65 and 103 nM, respectively). Levetimide may be a useful tool with which to investigate sigma recognition sites and sigma subtypes.  相似文献   

9.
Y Itzhak 《Life sciences》1988,42(7):745-752
The pharmacological specificity of representative psychotomimetic agents such as phencyclidine (PCP) analogs, opiate benzomorphans and several antipsychotic agents was assessed for the sigma and PCP binding sites. In a series of binding experiments, in rat brain membranes, sigma and PCP binding sites were labeled with [3H]-1-[1-(3-hydroxyphenyl)cyclohexyl]piperidine [( 3H]PCP-3-OH), (+) [3H]-N-allylnormetazocine [(+) [3H]SKF 10047] and (+) [3H]-3-[3-hydroxy-phenyl]-N-(1-propyl)piperidine [(+) [3H]-3-PPP]. PCP analogs inhibit potently high affinity [3H]PCP-3-OH binding and (+) [3H]SKF 10047 binding, moderately the low affinity binding component of [3H]PCP-3-OH and very weakly (+) [3H]-3-PPP binding. (+)SKF 10047 and cyclazocine are potent to moderate inhibitors of (+) [3H]SKF 10047, high affinity [3H]PCP-3-OH and (+) [3H]-3-PPP binding, but extremely weak inhibitors of low affinity [3H]PCP-3-OH binding. The antipsychotic agents display high affinity for (+) [3H]-3-PPP binding sites, moderate affinity for (+) [3H]SKF 10047 sites and have no effect on either the high or low affinity [3H]PCP-3-OH binding. The present data further support the existence of multiple sigma and PCP binding sites.  相似文献   

10.
To elucidate the relationship between L-glutamic acid and the putative chemoreceptor for glutathione, binding of L-[3H]glutamate to a crude membrane fraction from Hydra vulgaris (attenuata) has been characterized. The binding of L-[3H]glutamate was rapid, reversible and saturable. A Scatchard analysis of the specific binding revealed values of 10 microM for the dissociation constant (Kd) and 170 pmol/mg for the maximal capacity of binding sites (Bmax). A maximum of 65% of the specific L-[3H]glutamate binding was inhibited by the chemostimulatory peptide, glutathione. This glutathione-sensitive glutamate binding presumably represents the association of glutamate with a putative chemoreceptor which modulates feeding behavior in hydra. The remaining 35% of the specific L-[3H]glutamate binding may be due to a second class of glutamate binding sites which is insensitive to glutathione. The identification of glutathione-insensitive glutamate binding is the first indication of a putative glutamate receptor, which may mediate an action independent of the glutathione-induced feeding response. The glutathione-insensitive and glutathione-sensitive sites must have similar affinities for glutamate since these sites were indistinguishable by Scatchard analysis. A preliminary characterization of the glutathione-insensitive site, performed in the presence of saturating levels of glutathione, revealed inhibition of glutathione-insensitive glutamate binding by kainate and quisqualate, but not by N-methyl-D-aspartate. A glutathione-insensitive L-[3H]glutamate binding suggests that kainate and alpha-aminoadipate may be selective ligands for the glutathione-insensitive and glutathione-sensitive glutamate binding sites, respectively.  相似文献   

11.
Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of mu and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of [3H]-D-Ala2-D-Leu5-enkephalin (DADLE) in the presence of 10(-5) M D-Pro4-morphiceptin (to block the mu receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of [3H]-dihydromorphine, together with the higher potency of morphine analogues to displace [3H]-naloxone binding established the presence of mu sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of [3H]-DADLE binding. The observed heterogeneity of opioid receptors in cultured SH-SY5Y cells would serve as an excellent model for the biochemical and pharmacological characterization of brain opiate receptors.  相似文献   

12.
We used the radiolabelled inhibitor of Na+/H+ exchange 5-(N-methyl-N-[3H]isobutyl)amiloride ([3H]-MIA) for assessment of the amount of Na+/H+ exchanger in intact human blood platelets. The inhibition constant, KI, of unlabelled MIA toward the antiport was determined at 100 nM. Washed platelets were incubated for 5 s with different concentrations of [3H]-MIA in the presence or absence of an excess concentration of unlabelled amiloride (400 microM). The platelets were rapidly centrifuged and the radioactivity in the pellet was determined. Scatchard analysis revealed one single class of specific binding sites (KD = 63 nM) and a maximum binding capacity of 500 sites/cell. The turnover rate of the Na+/H(+)-exchanger in unstimulated platelets was estimated at 800/s at 25 degrees C.  相似文献   

13.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

14.
Y Itzhak  S Alerhand 《FASEB journal》1989,3(7):1868-1872
The existence of multiple receptor sites for the psychotomimetic agents phencyclidine (PCP) and some opiate-benzomorphans such as (+)N-allylnormetazocine ([+]SKF 10,047) in the mammalian central nervous system is well documented. These are: 1) sigma/PCP (sigma p) site, which binds both PCP and psychotomimetic opiates but not antipsychotics such as haloperidol, 2) PCP site, which selectively binds PCP analogs, and 3) sigma/haloperidol (sigma h) site, for which certain antipsychotics and (+)SKF 10,047, but not PCP analogs, display high affinity. In this study we examined the regulation of these receptor sites after chronic treatment of mice with either PCP or haloperidol. The following radiolabeled ligands were used to assess binding to the various receptor subtypes: [3H]-1-[1-[3-hydroxyphenyl)cyclohexyl]piperidine ([3H]PCP-3-OH; sigma p and PCP sites), [3H]thienyl-phencyclidine ([3H]TCP; PCP site), (+)-[3H]SKF 10,047 (sigma p and sigma h sites), and [3H]haloperidol (sigma h and D-2 dopamine receptors). Treatment of mice for 1, 7, 14, and 21 days with PCP (10 mg.kg-1.day-1) failed to induce variations in sigma p, sigma h, and PCP receptor binding. However, similar treatment with haloperidol (4 mg.kg-1.day-1) induced: 1) complete elimination of the binding to sigma h sites, 2) up-regulation of D-2 dopamine receptors, and 3) no change in sigma p and PCP receptor binding after 14 or 21 days of treatment. However, a single day of haloperidol treatment or in vitro incubation of mouse brain membranes with haloperidol failed to alter receptor binding. This study suggests that prolonged treatment of mice with haloperidol induces a loss in sigma h receptors that are presumably associated with certain psychotomimetic effects. This phenomenon is accompanied by an up-regulation of D-2 dopamine receptors.  相似文献   

15.
The sigma-receptor, a distinct binding site in brain tissue that may mediate some of the psychotomimetic properties of benzomorphan opiates and phencyclidine, has been solubilized using the ionic detergent sodium cholate. Binding assays were performed with the solubilized receptor using vacuum filtration over polyethyleneimine-treated glass fiber filters. The pharmacological specificity of the solubilized binding site for sigma-receptor ligands is nearly identical to the membrane-bound form of the receptor, with the order of potencies for displacement of the selective sigma-ligand [3H]di-o-tolylguanidine ([3H]DTG) closely correlated. The stereoselectivity for (+)-benzomorphan opiate enantiomers was retained by the solubilized receptor. The soluble receptor retained high affinity for binding of [3H]DTG (KD = 28 +/- 0.5 nM) and (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [(+)-[3H]3-PPP] (KD = 36 +/- 2 nM). Photoaffinity labeling of the solubilized receptor by [3H]p-azido-DTG, a sigma-selective photoaffinity label, resulted in labeling of a 29-kilodalton polypeptide identical in size to that labeled in intact membranes. Estimation of the Stokes radius of the [3H]DTG binding site was obtained by Sepharose CL-6B chromatography in the presence of 20 mM cholate and calculated to be 8.7 nm. This value was identical to the molecular size found for the binding sites of the sigma-selective ligands (+)-[3H]3-PPP and (+)-[3H]SKF-10,047, supporting the hypothesis that all three ligands bind to the same macromolecular complex.  相似文献   

16.
Tritium-labeled (+)-pentazocine ([3H]-1b) of specific activity 26.6 Ci/mmol was synthesized in 3 steps starting with (+)-normetazocine (2) of defined optical purity. [3H]-1b has been characterized as a highly selective ligand for labeling of sigma receptors. Competition data revealed that [3H]-1b could be displaced from guinea pig brain membrane preparations with a number of commonly used sigma receptor ligands. [3H]-1b exhibited saturable, enantioselective binding with a Kd of 5.13 +/- 0.97 nM and a Bmax of 1146 +/- 122 fmol/mg protein. Phencyclidine (PCP) displaced [3H]-1b with low affinity while MK-801 was inactive, thus indicating insignificant activity at the PCP-binding site; apomorphine failed to displace [3H]-1b indicating lack of dopamine receptor cross-reactivity. Since the affinity of [3H]-1b is about 6 times that of the two commonly employed sigma ligands ((+)-3-[3H]PPP and [3H]DTG) and since it is more selective for sigma receptors than the benzomorphan [3H]SKF-10,047, it represents the first example of a highly selective benzomorphan based sigma receptor ligand. [3H]-1b should prove useful for further study of the structure and function of sigma receptors.  相似文献   

17.
The electrophilic affinity ligand, (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrochloride {(+)-MK801-NCS} was characterized for its ability to acylate phencyclidine (PCP) and sigma binding sites in vivo. Initial studies, conducted with mouse brain membranes, characterized the binding sites labeled by [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). The Kd values of [3H]TCP for PCP site 1 (MK801-sensitive) and PCP site 2 (MK801-insensitive) were 12 nM and 68 nM, with Bmax values of 1442 and 734 fmol/mg protein, respectively. Mice were sacrificed 18–24 hours following intracerebroventricular administration of the acylator. The administration of (+)-MK801-NCS increased [3H]TCP binding to site 2, but not to site. 1. Although (+)-MK801-NCS decreased [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d; cbcyclohepten-5,10-imine maleate ([3H](+)-MK801) binding to site 1, it had no effect on [3H]TCP binding to site 1. Viewed collectively with other published data, these data support the hypothesis that PCP sites 1 and 2 are distinct binding sites, and that [3H]TCP and [3H](+)-MK801 label different domains of the PCP binding site associated with the NMDA receptor.Abbreviations ((+)-MK801) (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine - ((+)-MK801-NCS) (+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrochloride - (PCP) 1-(1-phencyclohexyl)piperidine - (TCP) 1-{1-(2-thienyl)cyclohexyl}piperidine - (DTG) (2-(tllyl)guanidine - (metaphit) (1-(1-(3-isothiocyanatophenyl)-cyclohexyl)piperidine) - (NMDA) N-methyl-D-aspartate - (HEPPSO) (N-[2-hydroxyethyl]piperazine-N-[2-hydroxypropanesulfoni c acid] - ((+)-MK801-NCS) (+)-5-methyl(3-isothiocyanatophenyl)-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine - (NMDA) N-methyl-D-aspartate Address reprint requests to Dr. Rothman, Phone (410)550-1487.FAX 410-550-2997  相似文献   

18.
The DM1/sigma 1 site binds dextromethorphan (DM) and sigma receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [3H]dextromethorphan, [3H]3-(-3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[3H]1,3-Di-o-tolyl-guanidine ([3H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM Ki values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM1/sigma 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed Ki values of 9-13 and 3-4 microM respectively against the three labeled ligands. These results, the broad specificity of the DM1/sigma 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor. These findings may have important implications for the understanding of the therapeutic, side effects and toxicity of several neurotropic drugs.  相似文献   

19.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

20.
Buprenorphine: High-Affinity Binding to Dorsal Spinal Cord   总被引:1,自引:0,他引:1  
The binding of the mixed opiate agonist-antagonist [3H]buprenorphine was compared with [3H]naloxone and [3H]dihydromorphine binding in membranes prepared from rat whole brain and dorsal spinal cord. Scatchard analysis of binding to whole brain yielded KD values close to 1.0 nM for all three 3H-ligands studied, although [3H]buprenorphine labelled five times as many binding sites. [3H]Naloxone and [3H]dihydromorphine bound to dorsal spinal cord with approximately the same affinity as to whole brain, although both 3H-ligands labelled fewer sites in the spinal cord. In contrast, Scatchard analysis of [3H]buprenorphine binding to spinal cord yielded curvilinear Scatchard plots, suggesting the presence of a very high-affinity (KD = 0.12 nM) binding site in addition to the high-affinity site (KD = 1.0 nM) present in the brain. Studies on the displacement of [3H]buprenorphine by opiates and D-Ala2,Met5-enkephalinamide supported the presence of two binding sites for this ligand in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号