首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized amorphous Fe–Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe+ ions to a fluence of 4.0 × 1017 cm−2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe–Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi2 thin layer.  相似文献   

2.
3.
Si nanocrystals (Si-nc) embedded in a SiO2 layer have been characterized by means of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). For local Si concentration in excess  8 × 1021 Si+/cm3, the size of the Si-nc was found to be 3 nm and comparatively homogeneous throughout the whole implanted layer. For local Si concentration in excess of 2.4 × 1022 Si+/cm3, the Si-nc diameter ranges from 2 to 12 nm in the sample, the Si-nc in the middle region of the implanted layer being bigger than those near the surface and the bottom of the layer. Also, Si-nc are visible deeper than the implanted depth. Characterization by XPS shows that a large quantity of oxygen was depleted from the first 25 nm in this sample (also visible on TEM image) and most of the SiO2 bonds have been replaced by Si–O bonds. Experimental and simulation results suggest that a local Si concentration in excess of 3 × 1021 Si/cm3 is required for the production of Si-nc.  相似文献   

4.
High dose 166Er or 160Gd implantations are used to form rare-earth (RE) silicides in Si. After implanting 0.8−2.0 × 1017 at./cm2 with 90 keV into Si(111) substrates kept at 450 to 530°C, we found that using conventional non-channeled implantation (tilted over 7°), it is impossible to form a continuous RESi1.7 layer. On the contrary, using channeled implantation, a continuous epitaxial ErSi1.7 layer with very good crystalline quality can be synthesized; a lowest χmin value of 1.5% for a surface ErSi1.7 layer is obtained. This different behaviour is explained using a model based on the difference in implantation depth, defect density and sputtering yield between random and channeled implantation, and the results are compared with Monte Carlo simulations. Such a high-quality RESi1.7/Si system offers a rare opportunity to study the structure, orientation and strain comprehensively using Rutherford backscattering and channeling spectrometry, X-ray diffraction and TEM. We found that the azimuthal orientation of the hexagonal RESi1.7 layer to the cubic Si substrate is RESi1.7[0001]/t|Si[111] and RESi1.7{11 0}/t|Si{110}. It is further observed that the ErSi1.7 epilayer is compre strained and quasi-pseudomorphic. In the case of GdSi1.7, the most difficult rare-earth silicide to form, and enhanced stabilization of the hexagonal over the orthorhombic phase is observed.  相似文献   

5.
Polycrystalline pellets of the rare-earth sesquioxide Dy2O3 with cubic C-type rare-earth structure were irradiated with 300 keV Kr2+ ions at fluences up to 5 × 1020 Kr/m2 at cryogenic temperature. Irradiation-induced microstructural evolution is characterized using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). In previous work, we found a phase transformation from a cubic, C-type to a monoclinic, B-type (C2/m) rare-earth structure in Dy2O3 during Kr2+ ion irradiation at a fluence of less than 1 × 1020 Kr/m2. In this study, we find that the crystal structure of the top and middle regions of the implanted layer transform to a hexagonal, H-type (P63/mmc) rare-earth structure when the irradiation fluence is increased to 5 × 1020 Kr/m2; the bottom of the implanted layer, on the other hand, remains in a monoclinic phase. The irradiation dose dependence of the C-to-B-to-H phase transformation observed in Dy2O3 appears to be closely related to the temperature and pressure dependence of the phases observed in the phase diagram. These transformations are also accompanied by a decrease in molecular volume (or density increase) of approximately 9% and 8%, respectively, which is an unusual radiation damage behavior.  相似文献   

6.
Formation of precursors and desorption of etching products by fluorine ion irradiation were studied using molecular dynamics (MD) simulation. When F atoms impact sequentially on a Si substrate, a mixed layer of F and Si atoms is formed on the surface. When the incident energy is below 30 eV, the fluorine coverage reaches steady state after 1.0×1016 atoms/cm2 irradiation. The ratio of F to Si in the mixed layer is about 1:1. At an incident energy of 15 eV, the mixed layer at steady state consists of 4.5 ML of fluorine with a depth of 20 Å and the main etching products are SiF3 and SiF4. At 30 eV incident energy, the mixed layer at steady state is 6.5 ML with a depth of 40 Å and the main etching products are SiF2 and SiF3. When F atoms were irradiated onto a Si substrate heated at 1000 K, a significant reduction of F coverage was observed due to diffusion of F atoms.  相似文献   

7.
The enthalpy of γ-LiAlO2 was measured between 403 and 1673 K by isothermal drop calorimetry. The smoothed enthalpy curve between 298 and 1700 K results in H0(T) − H0(298 K)=−37 396 + 93.143 · T + 0.00557 · T2 + 2 725 221 · T−1 J/mol. The standard deviation is 2.2%. The heat capacity was derived by differentiation of the enthalpy curve. The value extrapolated to 298 K is Cp,298=(65.8 ± 2.0) J/K mol.  相似文献   

8.
Macroscopic length (linear swelling) and thermal diffusivity changes were measured for heavily neutron-irradiated -Al2O3, AlN, β-Si3N4 and β-SiC that were irradiated under the same capsule to compare the difference between these materials. And in addition, several capsules were irradiated under different temperatures (646–1039 K) and to different neutron doses (0.4–8.0 × 1026 n/m2) in the Japanese experimental fast reactor JOYO. The swelling and the thermal diffusivity of as-irradiated specimens showed some dependence on the neutron-irradiation dose and the irradiation temperature, and that indicates stability under neutron-irradiation environments. Alpha-Al2O3 and AlN showed relatively large swelling and degradation of thermal diffusivity than β-Si3N4 and β-SiC. This difference is related to the crystal structure of each material. The dependence of swelling on irradiation dose, that is, -Al2O3 showed linear inclination but β-Si3N4 and β-SiC showed saturation, supports the model of defect structures. In addition, annealing behaviors of swelling and thermal diffusivity were compared to analyze the behavior of defects at higher temperature.  相似文献   

9.
The synthesis of SiGe/Si heterostructures by Ge+ ion implantation is reported. 400 keV Ge+ ions were implanted at doses ranging from 3 × 1016 to 10 × 1016 ions/cm2 into (001) Si wafers, followed by Si+ amorphisation and low temperature Solid Phase Epitaxial Regrowth (SPER). TEM investigations show that strained alloys can be fabricated if the elastic strain energy (Eel) of the SiGe layer does not exceed a critical value (Eel) of about 300 mJ/m2, which is independent of the implantation energy. Our analysis also suggests that “hairpin” dislocations are formed as strain relieving defects in relaxed structures. A “strain relaxation” model is proposed to explain their formation.  相似文献   

10.
In the present study, a 500 Å thin Ag film was deposited by thermal evaporation on 5% HF etched Si(1 1 1) substrate at a chamber pressure of 8×10−6 mbar. The films were irradiated with 100 keV Ar+ ions at room temperature (RT) and at elevated temperatures to a fluence of 1×1016 cm−2 at a flux of 5.55×1012 ions/cm2/s. Surface morphology of the Ar ion-irradiated Ag/Si(1 1 1) system was investigated using scanning electron microscopy (SEM). A percolation network pattern was observed when the film was irradiated at 200°C and 400°C. The fractal dimension of the percolated pattern was higher in the sample irradiated at 400°C compared to the one irradiated at 200°C. The percolation network is still observed in the film thermally annealed at 600°C with and without prior ion irradiation. The fractal dimension of the percolated pattern in the sample annealed at 600°C was lower than in the sample post-annealed (irradiated and then annealed) at 600°C. All these observations are explained in terms of self-diffusion of Ag atoms on the Si(1 1 1) substrate, inter-diffusion of Ag and Si and phase formations in Ag and Si due to Ar ion irradiation.  相似文献   

11.
The EMF of the following galvanic cells,
(render)
Kanthal,Re,Pb,PbOCSZO2 (1 atm.),Pt
(render)
Kanthal,Re,Pb,PbOCSZO2(1 atm.),RuO2,Pt
were measured as a function of temperature. With O2 (1 atm.), RuO2 as the reference electrode, measurements were possible at low temperatures close to the melting point of Pb. Standard Gibbs energy of formation, ΔfG0mβ-PbO was calculated from the emf measurements made over a wide range of temperature (612–1111 K) and is given by the expression: ΔfG0mβ-PbO±0.10 kJ=−218.98+0.09963T. A third law treatment of the data yielded a value of −218.08 ± 0.07 kJ mol−1 for the enthalpy of formation of PbO(s) at 298.15 K, ΔfH0mβ-PbO which is in excellent agreement with second law estimate of −218.07 ± 0.07 kJ mol−1.  相似文献   

12.
Charge state distributions of reflected ions are measured when 5 keV Arq+(q = 0−2) ions are incident on a clean KCl(0 0 1) surface at grazing angle, θi. Although the charge state distribution does not depend on the incident charge state at larger θi, significant dependence of the charge state distribution on incident charge state is observed at smaller θi. The ionization of Ar0 is completely suppressed at θi < 20 mrad, while large neutralization probability is observed for Ar+ incidence. These features allow us to derive the position-dependent neutralization rate of Ar+ in front of KCl(0 0 1). The obtained neutralization rate decreases exponentially with distance from the surface as it is usually assumed.  相似文献   

13.
Yttria stabilized zirconia (YSZ) is a candidate material focused as optical and insulating materials in nuclear reactors. Therefore, it is useful to investigate defect formation during irradiation, in order to assess YSZ resistance to radiation damage. In the present study, in situ transmission electron microscopy (TEM) observations were performed on YSZ during 30 keV Ne+ ion irradiation in the temperature range of 723–1123 K (using 100 K intervals). Results revealed that damage evolution morphology depends on irradiation temperature. For irradiations below 1023 K, defect clusters and bubbles were formed simultaneously. On the other hand, at 1123 K, only bubbles were formed in the initial stage of irradiation. Loops formed later following the bubble formation. It was also observed that, in the early stage of irradiation above 923 K, larger bubbles were formed along the loop planes compared with other areas.

TEM observations indicated that dislocation loops formed on three kinds of crystallographic planes: namely, {1 0 0}, {1 1 1} and {1 1 2} planes.  相似文献   


14.
High resolution channeling contrast microscopy (CCM) and channeling measurements were carried out to characterize SiGe quantum well structures on micron thick graded layers (i.e. virtual substrates). The virtual substrates were grown by gas source molecular beam epitaxy at a pressure of 10−5 mbar and low pressure chemical vapor deposition at 10−2 mbar on boron doped Si(0 0 1) substrates respectively. A homoepitaxial silicon buffer layer was grown prior to the deposition. The nominal structure is a 20 nm Si0.75Ge0.25 layer at the surface, followed by 10 nm pure Si, 500 nm Si0.75Ge0.25 and a 1000 nm thick graded SiGe (0–26%) layer. RBS was used to measure the depth profiles, and angular scans around the (1 0 0) axis were carried out to assess crystal and interface quality. CCM was used to acquire depth resolved images of micron-sized lateral inhomogenities (‘cross-hatch') present on both samples.  相似文献   

15.
In examining the microstructure of TEM specimens prepared from D+-implanted Cu for the presence of bubbles it was found that cuprous oxide (Cu2O) layers had formed over large areas of the specimen surfaces. The Cu was irradiated at normal incidence with 200 keV D+ ions at a temperature of 120 K to a dose of ˜2 × 1021 D+/m2. Ar+ ion milling at 330 K was used to erode irradiated surfaces to various depths prior to chemical back-thinning in a jet electropolishing bath. There was no evidence for the formation in the Cu of bubbles of either deuterium or argon, but dislocations at high density and planar defects were evident. Lattice fringes from {110}, {111} and {200} planes in Cu2O and moiré patterns formed by double diffraction in the Cu and overlaid Cu2O film were obvious features in bright-field micrographs. The moiré patterns include examples of magnified images of lattice defects.  相似文献   

16.
Electronically conducting polymers are suitable electrode materials for high performance supercapacitors, for their high specific capacitance and high dc conductivity in the charged state. Supercapacitors and batteries are energy storage and conversion systems which satisfies the requirements of high specific power and energy in a complementary way. Ion beam {energy > 1 MeV} irradiation on the polymer is a novel technique to enhance or alter the properties like conductivity, density, chain length and solubility.

Conducting polymer polypyrrole thin films doped with LiClO4 are synthesized electrochemically on ITO coated glass substrate and are irradiated with 160 MeV Ni12+ ions at different fluence 5 × 1010, 5 × 1011 and 3 × 1012 ions cm−2. Dc conductivity measurement of the irradiated films showed 50–60% increase in conductivity which is may be due to increase of carrier concentration in the polymer film as observed in UV–Vis spectroscopy and other effects like cross-linking of polymer chain, bond breaking and creation of defects sites. X-ray diffractogram study shows that the degree of crystallinity of polypyrrole increases in SHI irradiation and is proportionate to ion fluence. The capacitance of the irradiated films is lowered but the capacitance of the supercapacitors with irradiated films showed enhanced stability compared to the devices with unirradiated films while characterized for cycle life up to 10,000 cycles.  相似文献   


17.
The vaporization of Li4TiO4 has been studied by a mass spectrometric Knudsen effusion method in the temperature range 1082–1582 K. Identified vapors are Li(g), LiO(g), Li2O(g) and Li3O(g). When the vaporization proceeds, the content of Li2O in the Li4TiO4 sample decreases and the condensed phase of the sample changes to β-Li4TiO4 plus l-Li2TiO3 below 1323 K, to β-Li4TiO4 plus h-Li2TiO3 in the range 1323–1473 K and to h-Li2TiO3 plus liquid above 1473 K. On the basis of the partial pressure data, the enthalpies of formation for β-Li4TiO4 from elements and from constituent oxides have been determined to be ΔHf,298°(β-Li4TiO4,s) = −2247.8 ± 14.3 kJ mol−1 and Δfox,298°(β-Li4TiO4, s) = −107.3 ± 14.3 kJ mol−1, respectively.  相似文献   

18.
Si1−xGex amorphous layers implanted with different doses of carbon (between 5 × 1015 and 2 × 1017 cm−2 and annealed at 700°C and 900°C have been analyzed by Raman and Infrared spectroscopies, electron microscopy and Auger electron spectroscopy. The obtained data show the synthesis of amorphous SiC by implanting at the highest doses. In these cases, recrystallization only occurs at the highest annealing temperature (900°C). The structure of the synthesized SiC strongly depends on the implantation dose, in addition to the anneal temperature. For the highest dose (2 × 1017 cm−2), crystalline β-SiC is formed. Finally, a strong migration of Ge towards the Si substrate is observed from the region where SiC precipitation occurs.  相似文献   

19.
Single crystals of the ABO3 phases CaTiO3, SrTiO3, BaTiO3, LiNbO3, KNbO3, LiTaO3, and KTaO3 were irradiated by 800 keV Kr+, Xe+, or Ne+ ions over the temperature range from 20 to 1100 K. The critical amorphization temperature, Tc, above which radiation-induced amorphization does not occur varied from approximately 450 K for the titanate compositions to more than 850 K for the tantalates. While the absolute ranking of increasing critical amorphization temperatures could not be explained by any simple physical parameter associated with the ABO3 oxides, within each chemical group defined by the B-site cation (i.e., within the titanates, niobates, and tantalates), Tc tends to increase with increasing mass of the A-site cation. Tc was lower for the Ne+ irradiations as compared to Kr+, but it was approximately the same for the irradiations with Kr+ or Xe+. Thermal recrystallization experiments were performed on the ion-beam-amorphized thin sections in situ in the transmission electron microscope (TEM). In the high vacuum environment of the microscope, the titanates recrystallized epitaxially from the thick areas of the TEM specimens at temperatures of 800–850 K. The niobates and tantalates did not recrystallize epitaxially, but instead, new crystals nucleated and grew in the amorphous region in the temperature range 825–925 K. These new crystallites apparently retain some ‘memory' of the original crystal orientation prior to ion-beam amorphization.  相似文献   

20.
Silicon carbide (SiC) precipitates buried in Si(1 0 0) substrates were synthesized by ion implantation of 50 keV and 150 keV C+ ions at different fluences. Two sets of samples were subsequently annealed at 850 °C and 1000 °C for 30 min. Fourier transform infrared (FTIR) spectroscopy studies and X-ray diffraction (XRD) analysis confirmed formation of β-SiC precipitates in the samples. Ion irradiation with 100 MeV Ag7+ ions at room temperature does not induce significant change in the precipitates. It could be interpreted from the FTIR observations that ion irradiation may induce nucleation in Si + C solution created by ion implantation of C in Si. Modifications induced by swift heavy ion irradiation are found to be dependent on implantation energy of C+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号