首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We study the steady turn behaviours of some light motorcycle models on circular paths, using the commercial software package ADAMS-Motorcycle. Steering torque and steering angle are obtained for several path radii and a range of steady forward speeds. For path radii much greater than motorcycle wheelbase, and for all motorcycle parameters including tyre parameters held fixed, dimensional analysis can predict the asymptotic behaviour of steering torque and angle. In particular, steering torque is a function purely of lateral acceleration plus another such function divided by path radius. Of these, the first function is numerically determined, while the second is approximated by an analytically determined constant. Similarly, the steering angle is a function purely of lateral acceleration, plus another such function divided by path radius. Of these, the first is determined numerically while the second is determined analytically. Both predictions are verified through ADAMS simulations for various tyre and geometric parameters. In summary, steady circular motions of a given motorcycle with given tyre parameters can be approximately characterised by just one curve for steering torque and one for steering angle.  相似文献   

4.
5.
6.
An approximate method is presented which produces a handling diagram useful for the study of steady-state turning behaviour at different values of steer angle, path radius and speed In three successive parts the steady state response of simple and more elaborate vehicle models and the stability of the resulting motion are discussed.  相似文献   

7.
In this paper, an original approach based on the Volterra series theory is applied in order to analyse a nonlinear single track model, which is considered to describe the vehicle dynamics behaviour in the nonlinear domain. This model is based on a polynomial approximation up to the third order of the Pacejka formula that describes the full tyre behaviour. The analysis of the model is carried out using a truncated form of the Volterra series; this allows the extraction of an analytical formulation of the nonlinear response characteristics. The analysis is focused on the extraction of the first order frequency response function expression and the understeer angle curve vs lateral acceleration, which characterises the vehicle typology and stability. The resulting equations and illustrations in both the cases are presented.  相似文献   

8.
The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   

9.
For high speed rail traffic it is necessary to design overhead power systems which minimize the contact loss between pantograph head and contact wire. To predict how different design solutions will behave it is favourable to model and simulate the dynamic behaviour. In this paper a model of an overhead power system is specified and used in simulation. The model is suitable for simulation with contact loss since it includes specifications of impact conditions between pantograph head and contact wire. Two sets of equations of motion are specified, one for the contact case and one for the non-contact case. The model also includes lateral movement of the wire due to the zigzag span and friction between the pantograph head and the contact wire. It is shown how to make animations of the system behaviour using a MCAE-system. The animations are made using a geometrical model of the system together with results from numerical simulations.

Through the examples provided, use of the mathematical model and the geometrical model is presented. The response is visualised as time histories and phase plane diagrams of different coordinates and as animations of the total system response. The different types of visualisations make an excellent combination when studying the system behaviour of different design solutions.

In one example, simulation using the linearised set of equations gives the same results as simulation using the set of fully nonlinear equations, due to periodic response and the simple alternation of contact conditions. It is shown that the situation when any of the parameters vary suddenly is possible to simulate using the fully nonlinear equations of motion.  相似文献   

10.
11.
SUMMARY

The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   

12.
This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.  相似文献   

13.
汽车紧急制动响应的分析   总被引:1,自引:0,他引:1  
汽车紧急制动时,制动力矩、制动减速度、车速、车体俯倾角及其角加速度与时间呈非线性关系。本文对BJ212轻型越野汽车满载紧急制动进行了试验,以试验结果为依据,讨论了汽车紧急制动时诸参数之间的关系。其结论是:在瞬变过程中,制动减速度及车体俯倾角加速度与其制动初速度无关;在平稳过程中,制动减速度及车体俯倾角加速度随制动初速度增大而减小,而且大致成线性关系。  相似文献   

14.
强风环境下斜拉桥车桥系统动力响应分析研究   总被引:2,自引:2,他引:0  
基于模态综合分析理论,在推导复杂车辆模型刚度、阻尼矩阵和建立车桥系统风荷载模型的基础上,提出一种全面考虑动力风载效应的车桥系统动力响应分析方法,结合桥例对强风环境下的斜拉桥车桥系统的动力响应进行了分析研究。结果表明:强风下桥梁竖向位移响应受风载影响显著,横向位移响应主要由风荷载控制;低风速下桥梁的振动加速度响应受风荷载影响较大;风荷载引发的桥梁振动对车辆竖向位移和加速度响应影响较大,横向响应由风载和桥梁响应控制,风载对车桥系统动力响应影响明显。所提出的方法具有较高的精度和分析效率,可为其他类型大跨桥梁的相关分析提供参考。  相似文献   

15.
Small, narrow commuter vehicles have attracted considerable interest in recent years as a means to increase the utilization of existing freeways and parking facilities. However, conventional narrow track vehicles are likely to have reduced stability against overturning during hard cornering. A possible solution to this problem lies in vehicles which tilt toward the inside of a turn. Two different ways to achieve this tilt will be analyzed. For direct tilt control (DTC) an actuator forces the upper part of the vehicle to tilt. Steering tilt control (STC) uses steering to control the tilt as is done by motorcycle or bicycle riders. At low speeds, only the DTC system is effective while at high speeds the STC offers less lateral acceleration for the passenger during transient cornering and may seem more natural. The two methods of control will be studied separately and it will be shown that even though the same steady state tilt can be achieved with either system, the transient behavior of the systems is very different. It also will be shown that it is possible to switch from one system to the other at an arbitrarily chosen speed with virtually no transient effects even when the vehicle is not in a steady state. Regardless of which control system is active, the driver simply communicates his desire to follow the road by moving the steering wheel and the control systems take care of the tilting either by using the tilt actuator or by actively steering the road wheels. Thus the driver does not need to leam how to stabilize the tilt mode of the vehicle.  相似文献   

16.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   

17.
The steady-state cornering behaviour of rear-wheel drive vehicles fitted with locked differential is critically analysed by means of simple, albeit carefully formulated, vehicle models, which allow for a rigorous theoretical analysis. Results obtained for some classical manoeuvres, with either constant forward speed, steer angle or turning radius, clearly show that, in the case of locked differential, the vehicle cornering behaviour is strongly affected by the manoeuvre. As an important consequence, the handling diagram is not unique and the understeer gradient is no longer dependent only upon the lateral acceleration, as in vehicles equipped with an open differential. Accordingly, this study shows that some typical tools and concepts of vehicle dynamics are indeed inadequate in the case of locked differential.  相似文献   

18.
A comparison between two different approaches to vehicle stability control is carried out, employing a robust non-parametric technique in the controller design. In particular, an enhanced internal model control strategy, together with a feedforward action and a suitably generated reference map, is employed for the control of a vehicle equipped either with a rear wheel steering (RWS) system or with a rear active differential (RAD) device. The uncertainty arising from the wide range of operating conditions is described by an additive model set employed in the controller design. Extensive steady state and transient tests simulated with an accurate 14 degrees of freedom nonlinear model of the considered vehicle show that both systems are able to improve handling and safety in normal driving conditions. RAD devices can make the vehicle reach higher lateral acceleration values but they achieve only slight stability improvements against oversteer. On the other hand, 4WS systems can greatly improve both vehicle safety and manoeuvrability in all driving situations, making this device an interesting and powerful stability system.  相似文献   

19.
Sideslip angle could provide important information concerning vehicle's stability. Unfortunately direct measurement of sideslip angle requires a complex and expensive experimental set-up, which is not suitable for implementation on ordinary passenger cars; thus, this quantity has to be estimated starting from the measurements of vehicle lateral/longitudinal acceleration, speed, yaw rate and steer angle. According to the proposed methodology, sideslip angle is estimated as a weighted mean of the results provided by a kinematic formulation and those obtained through a state observer based on vehicle single-track model. Kinematical formula is considered reliable for a transient manoeuvre, while the state observer is used in nearly quasi-state condition. The basic idea of the work is to make use of the information provided by the kinematic formulation during a transient manoeuvre to update the single-track model parameters (tires cornering stiffnesses). A fuzzy-logic procedure was implemented to identify steady state or transient conditions.  相似文献   

20.
An optimal preview control algorithm is applied to a two degree of freedom(dof) vehicle model travelling with constant velocity on a randomly profiled road. The road roughness is modelled as a homogeneous random process being the output of a linear first order filter to white noise. The input from the road irregularity is assumed to be measured at some distance in front of the vehicle and this measured infonnation is utilized by the active controller to prepare the system for the ensuing input. The preview control algorithm is obtained by minimizing a quadratic performance index and by describing the average behaviour of the system by the covariance matrix of the vehicle response state vector. Results are presented for full state feedback and significant improvements in sprung mass acceleration, suspension working space and road holding are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号