共查询到17条相似文献,搜索用时 121 毫秒
1.
目的对一株海洋来源的产海藻糖合成酶菌株进行鉴定及产酶条件的初步优化。方法通过16SrDNA基因序列的同源性分析,对一株来源于东海海水的海藻糖合成酶产生菌进行鉴定,并通过单因素分析初步研究其培养特性和最佳的发酵条件。结果该菌16SrDNA序列与GenBank中已知序列相比,最高相似度为100%,鉴定为假单胞菌属(Pseudomonas),命名为Pseudomonassp.A50。其最佳碳源和氮源分别为2%麦芽糖和0.5%酵母膏,最佳NaCl浓度为2.5%,在初始pH7.8,接种量1%,装液量125mL/250mL,28℃,130r/min发酵48h,海藻糖合成酶活力达到最高。结论此产海藻糖合成酶菌株为假单胞菌属,优化后,海藻糖合成酶活力达到14.16U/mL。 相似文献
2.
3.
Pseudomonas putida S1海藻糖合成酶基因在大肠杆菌中的克隆表达 总被引:1,自引:0,他引:1
利用PCR和TA克隆方法扩增和克隆得到了恶臭假单胞菌Pseudomonas putida S1的海藻糖合成酶基因treS.对其进行序列分析表明,其编码区含有2067bp,编码含688个氨基酸残基的蛋白质,其核苷酸序列和蛋白质序列与来源于其它假单胞菌属细菌的海藻糖合成酶的序列表现出了较高同源性.将该基因序列与表达载体pQE30T连接,构建重组质粒pQE30T-TS,并将其转化至E.coli M15菌株中.重组菌株经诱导表达后SDS-聚丙烯酰胺凝胶电泳结果显示有明显的分子量约77.5kD的特异蛋白条带出现.经测定酶活力达19U/mL,约是原始菌株P.putida S1的50倍. 相似文献
4.
5.
利用生物信息学手段,在GenBank数据库进行氨基酸的同源性检索分析,发现来自谷氨酸棒杆茵(Corynebacterium glutamicum)一功能未确定的ORF序列被注释为假设的海藻糖酶(putative trehalose sesynthase),它与已报道的海藻糖合成酶的氨基酸序列有60%以上的同源性。本研究把这段ORF克隆到大肠杆茵进行表达及进行功能鉴定。实验表明这段ORF序列为一新的海藻糖合成酶基因,其表达产物能将麦芽糖分子转化成海藻糖分子。重组酶性质的初步研究表明重组酶在pH7.0~7.5,30℃转化麦芽糖效率最高。 相似文献
6.
7.
8.
蝇属昆虫纲,双翅目,能传播霍乱、伤寒、结核及痢疾等多种疾病的病原菌,种类较多,生长很快,分布广泛,危害严重。化学药剂灭蝇,不仅杀虫效果差,而且环境污染严重。生物防治蝇蛆,不仅能避免污染,而且可在蝇蛆中间不断传染,药效较长。但是,目前在国内外尚未见到有这方面的研究报告,仅见到刘世贵等利用类产碱假单胞菌防治草地蝗虫的报道。 相似文献
9.
利用生物信息学手段,在GenBank中进行氨基酸序列的同源性比较分析,检索到来自于耐放射异常球菌(Deinococcus radiodurans)基因组序列中一功能未确定的开放阅读框(ORF),其氨基酸序列和已报道的海藻糖合成酶的氨基酸序列有约60%的同源性.将这段ORF克隆到大肠杆菌进行表达,并进行功能鉴定.实验表明这段ORF序列所编码的是一种海藻糖合成酶,它能将麦芽糖分子转化成海藻糖分子,以30%的麦芽糖为底物时能将约65%的麦芽糖转化成海藻糖.重组酶性质初步研究表明,在pH 7.0,最佳温度30℃转化麦芽糖效率最高. 相似文献
10.
一株花生根际铁载体产生菌的分离鉴定及耐药性分析 总被引:1,自引:0,他引:1
目的:从花生根际筛选铁载体产生能力较强的菌株,对其进行鉴定及耐药性分析。方法:用梯度稀释法从花生根际中分离出细菌,在刃天青(CAS)检测平板上依显色圈的大小从中筛选出一株铁载体产生能力较强的菌,并对其进行生理生化鉴定和16S rDNA序列分析,用抗生素梯度平板检测其对9种常见抗生素的抗性。结果:筛选出一株产铁载体的菌株D15,13项生理生化指标除甲基红试验呈阳性外,其他均与恶臭假单胞菌相同;其16S rDNA与恶臭假单胞菌的同源性为100%;该菌对氨苄青霉素、氯霉素、利福平、红霉素、新霉素、链霉素、四环素都有不同程度的的抗性,对卡那霉素和庆大霉素表现较强的敏感性。结论:获得铁载体产生菌D15,经鉴定为恶臭假单胞菌,该菌耐药性符合用转座子诱变法研究铁载体合成的相关基因的条件。 相似文献
11.
Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius 总被引:1,自引:0,他引:1
Gueguen Y Rolland JL Schroeck S Flament D Defretin S Saniez MH Dietrich J 《FEMS microbiology letters》2001,194(2):201-206
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed. 相似文献
12.
13.
14.
Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome 总被引:3,自引:0,他引:3
Wei YT Zhu QX Luo ZF Lu FS Chen FZ Wang QY Huang K Meng JZ Wang R Huang RB 《Acta biochimica et biophysica Sinica》2004,36(7):477-484
Trehalose is a disaccharide with two glucose mole-cules linked in an α,α-1,1-glycosidic linkage. The onlyreducing group in each of its glucose molecules has beenused up for the formation of α,α-1,1-glycosidic linkage,therefore trehalose is a nonreducing disaccharide withhigh stability against the disruption caused by such factorsas temperature and extreme pH of environment [1]. Ithas been well established that many organisms will copewith external stress conditions by increasing the levelo… 相似文献
15.
Woo EJ Ryu SI Song HN Jung TY Yeon SM Lee HA Park BC Park KH Lee SB 《Journal of molecular biology》2010,404(2):247-259
Many microorganisms produce trehalose for stability and survival against various environmental stresses. Unlike the widely distributed trehalose-biosynthetic pathway, which utilizes uridine diphosphate glucose and glucose-6-phosphate, the newly identified enzyme trehalose glycosyltransferring synthase (TreT) from hyperthermophilic bacteria and archaea synthesizes an α,α-trehalose from nucleoside diphosphate glucose and glucose. In the present study, we determined the crystal structure of TreT from Pyrococcus horikoshii at 2.3 Å resolution to understand the detailed mechanism of this novel trehalose synthase. The conservation of essential residues in TreT and the high overall structural similarity of the N-terminal domain to that of trehalose phosphate synthase (TPS) imply that the catalytic reaction of TreT for trehalose synthesis would follow a similar mechanism to that of TPS. The acceptor binding site of TreT shows a wide and commodious groove and lacks the long flexible loop that plays a gating role in ligand binding in TPS. The observation of a wide space at the fissure between two domains and the relative shift of the N-domain in one of the crystal forms suggest that an interactive conformational change between two domains would occur, allowing a more compact architecture for catalysis. The structural analysis and biochemical data in this study provide a molecular basis for understanding the synthetic mechanism of trehalose, or the nucleotide sugar in reverse reaction of the TreT, in extremophiles that may have important industrial implications. 相似文献
16.
17.
Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China 总被引:1,自引:0,他引:1
Zhu Y Zhang J Wei D Wang Y Chen X Xing L Li M 《Bioscience, biotechnology, and biochemistry》2008,72(8):2019-2024
A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose. 相似文献