首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
提出了一种利用数字图像相关法和单目视觉技术相结合的方法,实现了对板料进行全场平面应变测量。研究了基于数字图像相关法计算应变的算法,通过实验测量板料在无载荷工况下的静态和动态形变,实验结果表明采用数字图像相关法测量静态应变,最大平均误差0.004mm/50mm,动态应变最大平均误差0.015mm/50mm,此实验方法揭示了单目视觉技术对测量应变精度影响的规律,验证了数字图像相关法测量应变的可行性。  相似文献   

2.
基于V型缺口试样双轨剪切法设计了面内剪切试验方案,开展了莫来石纤维增强气凝胶复合材料的室温面内剪切和弯曲性能试验,采用数字图像相关方法对试样表面的位移场和应变场进行测量,并分析了力学行为和破坏模式。结果表明:设计的试验方案可以在测试区域获得均匀的剪切应变场,适用于莫来石纤维增强气凝胶复合材料的面内剪切性能测试。试验获得的面内剪切模量和强度分别为248 MPa和0.95 MPa,弯曲模量和强度分别为294 MPa和2.08 MPa。面内剪切载荷下,试样的裂纹萌生于缺口尖端附近,并沿两缺口连线方向扩展。根据弯曲正应变场的分布特点,发现试样中性层与几何对称面不重合,验证了该材料拉压模量不同的性质。采用数字图像相关方法获得的中性层位置和理论计算值比较接近,相对误差在10%左右。  相似文献   

3.
数字图像相关法测量全场位移和应变是一种新的实验力学方法.该测量算法中相关函数和子区大小的选择是影响最终应变测量精度的重要因素.本文采用已知应变变形的仿真散斑图,研究了测量算法中主要相关函数和子区大小在正常光照与高斯不均匀光照条件下,对应变测量精度的影响.得出了不同测量要求下,可选择的相关函数和最佳计算窗口.通过实验验证与分析了此算法的测量精度.研究结果表明,数字图像处理技术测量应变的测试精度满足基本要求.  相似文献   

4.
岩土材料在力学性能上表现出各向异性与非线性特征,不同土体的受力变形规律也不相同。为了更真实地反映平面应变状态下土的受力变形特性,研制了一种新型的平面应变加载设备,该设备通过对试样的侧向(围压方向上)施加柔性荷载来降低常规平面应变试验中刚性加载所造成的边界约束影响。同时,搭建了能够得到表面变形识别的数字图像采集系统。在此基础上,利用研制的平面应变设备结合二维数字图像相关技术(2D-DIC)根据获得试验过程中的全场变形来分析福建标准砂在不同围压下的变形特性。另外,通过数字图像相关法得到的平面应变试验结果来确定砂土基于抗滚动摩擦模型的细观参数,并对试验过程进行了离散元分析。结果表明:基于数字图像相关测量技术的新型平面应变试验设备可以准确获得福建标准砂的局部变形规律和变形过程的非线性行为,由此确定的砂土细观参数也能够较为真实地反映试验材料的应力-应变关系。  相似文献   

5.
采用局部位移场最小二乘拟合数字图像相关方法测量了虚拟剪切带的应变,并将测量结果与中心差分方法的结果和理论解进行了对比,主要研究了计算窗口尺寸和子区尺寸的影响。研究发现:当子区尺寸较小且应变计算窗口尺寸较大时,局部位移场最小二乘拟合数字图像相关方法的测量结果接近于理论解;对于测量单轴压缩条件下低液限黏土试样破坏过程中的应变场,局部位移场最小二乘拟合方法的测量结果比中心差分方法测量结果更准确,有助于对剪切带应变的准确测量。  相似文献   

6.
通过设计圆弧边缘夹持方案和狗骨形拉伸试样,开展了陶瓷纤维增强SiO2气凝胶复合材料室温环境中的面内拉伸性能试验,采用数字图像相关方法对陶瓷纤维增强SiO2气凝胶复合材料表面的全场变形进行测量和分析,并结合获得的非均匀应变分布情况进一步讨论其力学行为特征和变形断裂机制。结果表明:纤维增强增韧机制使陶瓷纤维增强SiO2气凝胶复合材料的面内拉伸行为表现出一定的非线性及韧性特征;在一定载荷水平下,陶瓷纤维增强SiO2气凝胶复合材料表面应变分布呈显著的非均匀特征,与内部随机的纤维排布及各处传力情况不同相关,可选择较大计算区域进行平均化处理来减弱对测试中应变度量的影响;在加载和断裂过程中陶瓷纤维增强SiO2气凝胶复合材料表面存在局部应变集中现象,并随着裂纹扩展而发生演变,面内拉伸载荷下的宏观断口呈锯齿状特征,主要由剪应力主导的基体断裂、法向针刺对纤维铺层的约束等原因所致。本文研究结果为隔热复合材料的强韧化性能提高指明了方向。   相似文献   

7.
杨国标  王东方  朱启荣 《计量学报》2006,27(Z1):142-145
提出的双CCD数字图像相关测量系统具有非接触、高精度、实时操作方便的特点,若将其用于应变测量,灵敏度优于1个微应变.它还可用于位移、新型材料线胀系数等的测量.用实验方法对影响双CCD数字图像相关测量系统精度的几种因素进行分析和研究,从理论上分析和评价记录视场角、投影视场角、离焦对测量结果精度的影响,以及这三种因素的综合影响.文中还给出了材料应变的实验测量结果,表明双CCD数字图像相关测量系统具有较高的测量精度,能应用于位移、应变的实际工程测量.  相似文献   

8.
易贤仁 《工程力学》2000,1(A01):817-822
本文研究了受拉钢绞线的偏轴应变与轴向应变的转换关系,用实验验证了转换关系的正确性。提出了测量预应力钢绞线轴向应力的轴应变测量法。根据本方法,在预应力混凝土结构中,现场测量的钢绞线偏轴应变很容易转换为轴向应变和应力;工程实践表明,测量预应力钢绞线的偏轴应变法是一种实用的工程测试方法。  相似文献   

9.
杜咏  孙亚凯  李国强 《工程力学》2019,36(4):231-238
该文采用非接触式应变视频测量系统,开展了冷拉1860级钢绞线高温力学性能试验研究。基于试验测试的钢绞线高温应力-应变全过程曲线,建议了预应力钢结构用钢绞线的比例极限、弹性模量、名义屈服强度、断裂强度的高温折减系数以及高温应力-应变函数关系。试验结果表明,高强冷拉钢绞线高温下应力-应变全过程具有显著的应力强化阶段和颈缩阶段,1.25%应变下的高温名义屈服强度适用于高强冷拉钢绞线,钢绞线在高温下的捻度松弛效应对其高温力学性能存在影响。该研究成果进一步完善了预应力张拉钢结构用冷拉高强钢绞线高温下基本力学性能指标体系。  相似文献   

10.
基于数字图像相关法(DIC)与双目视觉技术,提出并实现了一种用于爆炸焊接制备的铜/铝复层板全场三维应变测量的方法。为了验证该方法的可行性,进行了Q235钢拉伸实验,将DIC法与引伸计变形测量结果进行了对比。应用DIC法对预应变下的复层板各向异性进行了性能检测与研究。结果表明:数字图像相关法的应变测量精度高于0.5%,与引伸计所测结果基本相当;随着预应变量的增加,复层板料力学参数的各向异性先增强后减弱;塑性应变比、应变硬化率的变化与预应变量和加载方向密切相关;板料轴向应变与宽向应变间的线性关系也受预应变与加载方向的影响。  相似文献   

11.
A Cu–Al 11.2 wt.%-Be 0.6 wt.% shape memory alloy was subjected to a uniaxial tension test using an MTS load frame with an attached optical microscope. Digital images of the sample's surface were acquired using white light and He–Ne laser illumination. The obtained images were associated to the engineering stress–strain behavior, which was calculated from the measured displacement, strain and force. From the images, displacement vector fields were calculated for white light and laser illumination by digital image correlation (DIC) and digital speckle pattern correlation (DSPC) techniques respectively. Using white light it was possible to observe the grains and the martensitic phase transformation of the material more clearly than using DSPC; nevertheless, better quantitative results of displacement, in-plane strain and elastic moduli were obtained using DSPC than using DIC when they were compared to the reference values measured by electrical extensometry. Furthermore DIC and DSPC work as complementary techniques to determined the micro and macromechanical behavior of the CuAlBe shape memory alloy.  相似文献   

12.
This paper presents a comparison between predicted and measured crack patterns developing in hot mix asphalt (HMA) mixtures during common fracture tests. A digital image correlation (DIC) System was applied to obtain displacement/strain fields and for detecting crack patterns. The resulting cracking behavior was predicted using a displacement discontinuity boundary element method to explicitly model the microstructure of HMA. The predicted fracture initiation and crack propagation patterns are consistent with observed cracking behavior. The results imply that fracture in mixtures can be modeled effectively using a micro-mechanical approach and that crack propagation patterns can be captured using the DIC System.  相似文献   

13.
阳奥  陈普会  孔斌  甘建  杨家勇 《复合材料学报》2020,37(10):2439-2451
对复合材料自动铺丝和手工铺丝两种T型加筋曲板进行了单轴压缩试验,采用基于数字图像相关技术(Digital image correlation, DIC)的三维光学测量方法对该型加筋曲板的局部屈曲及后屈曲波形进行实时监测,并与传统应变、位移测量结果进行了对比分析。试验结果表明:DIC能够准确捕捉整个试验过程中的位移场,使用DIC设备观测到的屈曲模态与应变片数据反映的波形具有良好的一致性;不同于传统测量方法,DIC能够准确捕捉蒙皮在后屈曲阶段的屈曲模态转换的全过程;利用DIC技术能够对试验不同时间节点(即不同载荷水平)的屈曲模态进行清晰、直观的观测,因而能够较准确地获得结构的屈曲载荷,该载荷与由应变-载荷曲线确定的屈曲载荷相比,误差小于5%。采用ABAQUS有限元软件对试验过程进行了数值仿真分析,并通过与试验结果的对比表明了计算结果、DIC测量结果与传统方法测量结果三者具有良好的一致性。   相似文献   

14.
The Digital Image Correlation (DIC) method is a fast-growing emerging technology that provides a low-cost method for measuring the strain of an object. In this study, the feasibility of using this method to observe cracks developed in reinforced concrete beams will be explored so that a practical application can be proposed. The DIC method has been applied for analysing the field of surface displacement and strain; it is not applicable for measuring non-continuous field of displacement. However, if a singular point (i.e., crack points) can be considered as the area of concentrated strain by imitating the treatment of micro-cracks using the finite element method, the region of concentrated strain field based on analyses of digital images can be applied for determining the locations of cracks. Laboratory results show that cracks developed in reinforced cement beams can be observed with a good precision using the von Mises strain field, and that smaller grids lead to clearer crack images. In addition to identifying visible cracks, the DIC image analysis will enable researchers to identify minute cracks that are not visible to naked eyes. Additionally, the DIC method has more accuracy and precision than visual observation for analysing crack loadings so that earlier warnings can be realized before cracks develop in the specimen.  相似文献   

15.
Abstract:  Although resin-based composites are widely used in dental restoration, these materials shrink during polymerisation. Polymerisation shrinkage results in distortion of the restoration and bonded tooth and also generates internal stress at the resin–tooth interface. Digital image correlation (DIC) is used to determine the in-plane displacement field by matching different zones of two characterised pictures. The objective of this study was to examine the applicability of DIC in measuring the deformation of the composite restoration and the surrounding tooth. A preliminary experiment examined the shrinkage of composites in a simulated cavity using the DIC method. The measured shrinkage pattern was consistent with a corresponding finite element model. Subsequently the deformation of composite restorations on human molars was examined using this validated DIC method. The greatest deformation was found on the free occlusal surfaces, and the least on the gingival wall. The increased deformation on the post-cured images indicated that the shrinkage continued even after termination of light activation. DIC method facilitates a full-field measurement of shrinkage profile. These experimental results did not only demonstrate the spatial and temporal relationship of displacement in a dental restoration, but also provide validation of computational models to examine the polymerisation consequence.  相似文献   

16.
This paper explains a new method to measure the fiber orientation in carbon fiber reinforced plastics (CFRP) laminates from X-ray CT images. In the method, the fiber orientation is analyzed by the application of digital image correlation (DIC) method to the acquired tomographic images. Using DIC, the brightness pattern, which results from the radiodensity difference between fiber and resin, is compared between two different planes in the thickness direction. Then, the three-dimensional displacement of the brightness pattern, which indicates the fiber orientation, can be measured. This study applied the proposed method to a quasi-isotropic CFRP laminate. After X-ray CT imaging, the sample was sectioned and polished. The fiber orientation was then measured experimentally using microscopy. The fiber orientation calculated using the proposed method agrees very well with the experimentally measured one. After demonstrating the validity of the proposed method, we applied it to a plain woven CFRP laminate. Results revealed that an invalid fiber orientation might be calculated for fibers parallel to the plane of the CT image, or for the fiber orientation of the pattern around the outer edge of CT images.  相似文献   

17.
A motion compensation method for thermoelastic stress analysis (TSA) is described that uses digital image correlation (DIC) to capture the displacement field on the surface of the specimen. The displacement field is used to correct the infrared (IR) images to remove the effect of the motion of the specimen from the TSA. As the DIC displacements are obtained with a relatively high spatial resolution, sharp displacement gradients and discontinuities can be corrected. The feasibility of the motion compensation method for TSA is investigated firstly by validating the approach using data obtained from an aluminium alloy plate with a central circular hole loaded in tension and comparing the results with a finite element model. It is shown that the motion compensation approach significantly improves the accuracy of TSA, particularly when high magnification optics are used. Next, the feasibility of simultaneous capture of IR and white light images is investigated. It is shown that by using the correct combination of paints, a speckle pattern can be applied to the surface to provide contrast in the white light spectrum for the DIC but have a uniform emissivity in the IR spectrum so that there is no effect on the TSA. Thus, it is possible for the motion compensation to be conducted on data collected during fatigue tests. Finally, it is demonstrated that the motion compensation technique can be applied to discontinuous motion produced by face sheet debonding in a foam cored sandwich structure loaded in a double cantilever beam (DCB) configuration. It is shown that the motion compensation technique is capable of correcting the complex and non‐uniform motion for TSA in the DCB test, thereby enabling detailed thermoelastic data to be obtained from the vicinity of the crack tip.  相似文献   

18.
《Strain》2018,54(1)
High‐throughput, high‐accuracy determination of thermal deformation and coefficient of thermal expansion (CTE) of carbon fibre–epoxy composites using 2D‐digital image correlation (2D‐DIC) is described. With the aid of a specially designed ultra‐stable and high fidelity imaging system, which integrates a high‐quality bilateral telecentric lens with monochromatic blue light illumination, surface images of multiple samples heated by a heating furnace can be captured simultaneously. The images of these samples at different temperatures are processed by advanced DIC algorithm to extract the thermal strains and the CTE of isotropic Al alloy, anisotropic unidirectional, and bidirectional carbon fibre–epoxy composites. Pure thermal expansions of these samples obtained after removing the small rigid‐body rotations clearly indicate the isotropic and anisotropic expansions of these samples. The well‐agreed results with literature values demonstrate the effectiveness and practicality of the proposed method for high‐throughput and high‐accuracy CTE measurements.  相似文献   

19.
Yang F  He X  Quan C 《Applied optics》2006,45(30):7785-7790
The advanced mechanical testing of microelectromechanical systems (MEMS) is necessary to provide feedback of measurements that can help the designer optimize MEMS structures and improve the reliability and stability of MEMS. We describe a digital image correlation (DIC) method for dynamic characterization of MEMS using an optical microscope with a high-speed complementary metaloxide semiconductor-based camera. The mechanical performance of a series of microgyroscopes is tested. The DIC method is employed to measure the microgyroscope in-plane displacement with subpixel accuracy. Use of the DIC method is less restrictive on the surface quality of the specimen and simplifies the measurement system. On the basis of a series of temporal digital images grabbed by a high-speed camera, the stability characteristic of the microgyroscopes is analyzed. In addition, the quality factors of the microgyroscopes are determined and agree well with other experimental methods.  相似文献   

20.
Abstract: This paper focuses on the application of the digital image correlation (DIC) technique to determine the stress intensity factor (SIF) for cracks in orthotropic composites. DIC is a full‐field technique for measuring the surface displacements of a deforming object and can be applied to any type of material. To determine the SIF from full‐field displacement data, the asymptotic expansion of the crack‐tip displacement field is required. In this paper the expansion of the crack tip displacement field is derived from an existing solution for strain fields. Unidirectional fibre composite panels with an edge crack aligned along the fibre were tested under remote tensile loading and the displacements were recorded using DIC. The SIF was calculated from the experimental data by fitting the theoretical displacement field using the least squares method. The SIF thus determined was in good agreement with theoretical results and therefore demonstrates the applicability of the derived displacement field and DIC technique for studying fracture in composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号