首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Semisoft cheese made from raw sheep's milk is traditionally and economically important in southern Europe. However, raw milk cheese is also a known vehicle of human listeriosis and contamination of sheep cheese with Listeria monocytogenes has been reported. In the present study, we have developed and applied a quantitative risk assessment model, based on available evidence and challenge testing, to estimate risk of invasive listeriosis due to consumption of an artisanal sheep cheese made with raw milk collected from a single flock in central Italy. In the model, contamination of milk may originate from the farm environment or from mastitic animals, with potential growth of the pathogen in bulk milk and during cheese ripening. Based on the 48‐day challenge test of a local semisoft raw sheep's milk cheese we found limited growth only during the initial phase of ripening (24 hours) and no growth or limited decline during the following ripening period. In our simulation, in the baseline scenario, 2.2% of cheese servings are estimated to have at least 1 colony forming unit (CFU) per gram. Of these, 15.1% would be above the current E.U. limit of 100 CFU/g (5.2% would exceed 1,000 CFU/g). Risk of invasive listeriosis per random serving is estimated in the 10?12 range (mean) for healthy adults, and in the 10?10 range (mean) for vulnerable populations. When small flocks (10–36 animals) are combined with the presence of a sheep with undetected subclinical mastitis, risk of listeriosis increases and such flocks may represent a public health risk.  相似文献   

2.
This article reports a quantitative risk assessment of human listeriosis linked to the consumption of soft cheeses made from raw milk. Risk assessment was based on data purposefully acquired inclusively over the period 2000-2001 for two French cheeses, namely: Camembert of Normandy and Brie of Meaux. Estimated Listeria monocytogenes concentration in raw milk was on average 0.8 and 0.3 cells/L, respectively, in Normandy and Brie regions. A Monte Carlo simulation was used to account for the time-temperature history of the milk and cheeses from farm to table. It was assumed that cell progeny did not spread within the solid cheese matrix (as they would be free to do in liquid broth). Interaction between pH and temperature was accounted for in the growth model. The simulated proportion of servings with no L. monocytogenes cell was 88% for Brie and 82% for Camembert. The 99th percentile of L. monocytogenes cell numbers in servings of 27 g of cheese was 131 for Brie and 77 for Camembert at the time of consumption, corresponding respectively to three and five cells of L. monocytogenes per gram. The expected number of severe listeriosis cases would be < or =10(-3) and < or =2.5 x 10(-3) per year for 17 million servings of Brie of Meaux and 480 million servings of Camembert of Normandy, respectively.  相似文献   

3.
A model for the assessment of exposure to Listeria monocytogenes from cold-smoked salmon consumption in France was presented in the first of this pair of articles (Pouillot et al ., 2007, Risk Analysis, 27:683–700). In the present study, the exposure model output was combined with an internationally accepted hazard characterization model, adapted to the French situation, to assess the risk of invasive listeriosis from cold-smoked salmon consumption in France in a second-order Monte Carlo simulation framework. The annual number of cases of invasive listeriosis due to cold-smoked salmon consumption in France is estimated to be 307, with a very large credible interval ([10; 12,453]), reflecting data uncertainty. This uncertainty is mainly associated with the dose-response model. Despite the significant uncertainty associated with the predictions, this model provides a scientific base for risk managers and food business operators to manage the risk linked to cold-smoked salmon contaminated with L. monocytogenes. Under the modeling assumptions, risk would be efficiently reduced through a decrease in the prevalence of L. monocytogenes or better control of the last steps of the cold chain (shorter and/or colder storage during the consumer step), whereas reduction of the initial contamination levels of the contaminated products and improvement in the first steps of the cold chain do not seem to be promising strategies. An attempt to apply the recent risk-based concept of FSO (food safety objective) on this example underlines the ambiguity in practical implementation of the risk management metrics and the need for further elaboration on these concepts.  相似文献   

4.
Jan F. Van Impe 《Risk analysis》2011,31(8):1295-1307
The aim of quantitative microbiological risk assessment is to estimate the risk of illness caused by the presence of a pathogen in a food type, and to study the impact of interventions. Because of inherent variability and uncertainty, risk assessments are generally conducted stochastically, and if possible it is advised to characterize variability separately from uncertainty. Sensitivity analysis allows to indicate to which of the input variables the outcome of a quantitative microbiological risk assessment is most sensitive. Although a number of methods exist to apply sensitivity analysis to a risk assessment with probabilistic input variables (such as contamination, storage temperature, storage duration, etc.), it is challenging to perform sensitivity analysis in the case where a risk assessment includes a separate characterization of variability and uncertainty of input variables. A procedure is proposed that focuses on the relation between risk estimates obtained by Monte Carlo simulation and the location of pseudo‐randomly sampled input variables within the uncertainty and variability distributions. Within this procedure, two methods are used—that is, an ANOVA‐like model and Sobol sensitivity indices—to obtain and compare the impact of variability and of uncertainty of all input variables, and of model uncertainty and scenario uncertainty. As a case study, this methodology is applied to a risk assessment to estimate the risk of contracting listeriosis due to consumption of deli meats.  相似文献   

5.
We used an agent‐based modeling (ABM) framework and developed a mathematical model to explain the complex dynamics of microbial persistence and spread within a food facility and to aid risk managers in identifying effective mitigation options. The model explicitly considered personal hygiene practices by food handlers as well as their activities and simulated a spatially explicit dynamic system representing complex interaction patterns among food handlers, facility environment, and foods. To demonstrate the utility of the model in a decision‐making context, we created a hypothetical case study and used it to compare different risk mitigation strategies for reducing contamination and spread of Listeria monocytogenes in a food facility. Model results indicated that areas with no direct contact with foods (e.g., loading dock and restroom) can serve as contamination niches and recontaminate areas that have direct contact with food products. Furthermore, food handlers’ behaviors, including, for example, hygiene and sanitation practices, can impact the persistence of microbial contamination in the facility environment and the spread of contamination to prepared foods. Using this case study, we also demonstrated benefits of an ABM framework for addressing food safety in a complex system in which emergent system‐level responses are predicted using a bottom‐up approach that observes individual agents (e.g., food handlers) and their behaviors. Our model can be applied to a wide variety of pathogens, food commodities, and activity patterns to evaluate efficacy of food‐safety management practices and quantify contamination reductions associated with proposed mitigation strategies in food facilities.  相似文献   

6.
The current quantitative risk assessment model followed the framework proposed by the Codex Alimentarius to provide an estimate of the risk of human salmonellosis due to consumption of chicken breasts which were bought from Canadian retail stores and prepared in Canadian domestic kitchens. The model simulated the level of Salmonella contamination on chicken breasts throughout the retail‐to‐table pathway. The model used Canadian input parameter values, where available, to represent risk of salmonellosis. From retail until consumption, changes in the concentration of Salmonella on each chicken breast were modeled using equations for growth and inactivation. The model predicted an average of 318 cases of salmonellosis per 100,000 consumers per year. Potential reasons for this overestimation were discussed. A sensitivity analysis showed that concentration of Salmonella on chicken breasts at retail and food hygienic practices in private kitchens such as cross‐contamination due to not washing cutting boards (or utensils) and hands after handling raw meat along with inadequate cooking contributed most significantly to the risk of human salmonellosis. The outcome from this model emphasizes that responsibility for protection from Salmonella hazard on chicken breasts is a shared responsibility. Data needed for a comprehensive Canadian Salmonella risk assessment were identified for future research.  相似文献   

7.
A probabilistic and interdisciplinary risk–benefit assessment (RBA) model integrating microbiological, nutritional, and chemical components was developed for infant milk, with the objective of predicting the health impact of different scenarios of consumption. Infant feeding is a particular concern of interest in RBA as breast milk and powder infant formula have both been associated with risks and benefits related to chemicals, bacteria, and nutrients, hence the model considers these three facets. Cronobacter sakazakii, dioxin‐like polychlorinated biphenyls (dl‐PCB), and docosahexaenoic acid (DHA) were three risk/benefit factors selected as key issues in microbiology, chemistry, and nutrition, respectively. The present model was probabilistic with variability and uncertainty separated using a second‐order Monte Carlo simulation process. In this study, advantages and limitations of undertaking probabilistic and interdisciplinary RBA are discussed. In particular, the probabilistic technique was found to be powerful in dealing with missing data and to translate assumptions into quantitative inputs while taking uncertainty into account. In addition, separation of variability and uncertainty strengthened the interpretation of the model outputs by enabling better consideration and distinction of natural heterogeneity from lack of knowledge. Interdisciplinary RBA is necessary to give more structured conclusions and avoid contradictory messages to policymakers and also to consumers, leading to more decisive food recommendations. This assessment provides a conceptual development of the RBA methodology and is a robust basis on which to build upon.  相似文献   

8.
Microbiological food safety is an important economic and health issue in the context of globalization and presents food business operators with new challenges in providing safe foods. The hazard analysis and critical control point approach involve identifying the main steps in food processing and the physical and chemical parameters that have an impact on the safety of foods. In the risk‐based approach, as defined in the Codex Alimentarius, controlling these parameters in such a way that the final products meet a food safety objective (FSO), fixed by the competent authorities, is a big challenge and of great interest to the food business operators. Process risk models, issued from the quantitative microbiological risk assessment framework, provide useful tools in this respect. We propose a methodology, called multivariate factor mapping (MFM), for establishing a link between process parameters and compliance with a FSO. For a stochastic and dynamic process risk model of in soft cheese made from pasteurized milk with many uncertain inputs, multivariate sensitivity analysis and MFM are combined to (i) identify the critical control points (CCPs) for throughout the food chain and (ii) compute the critical limits of the most influential process parameters, located at the CCPs, with regard to the specific process implemented in the model. Due to certain forms of interaction among parameters, the results show some new possibilities for the management of microbiological hazards when a FSO is specified.  相似文献   

9.
Information and Risk Perception: A Dynamic Adjustment Process   总被引:4,自引:0,他引:4  
Liu  Shiping  Huang  Ju-Chin  Brown  Gregory L. 《Risk analysis》1998,18(6):689-699
It is common in catastrophic food-contamination events that consumers fail to adjust instantaneously to a normal consumption level. One explanation is that consumers only gradually accept new positive information as being trustworthy. The gradual establishment of the trustworthiness of the released information depends on both positive and negative media coverage over time. We examine the individual "trust" effects by extending the prospective reference theory (Viscusi, 1989) to include a dynamic adjustment process of risk perception. Conditions that allow aggregation of changes in risk perceptions across individuals are described. The proposed model describes a general updating process of risk perceptions to media coverage and can be applied to explain the temporal impact of media coverage on consumption of a broad range of goods (food or nonfood). A case study of milk contamination is conducted to demonstrate consumer demand adjustment process to a temporarily unfavorable shock. The results suggest that effects of positive and negative information to adjustment of consumption and risk perception are asymmetric over time.  相似文献   

10.
Jocelyne Rocourt 《Risk analysis》2012,32(10):1798-1819
We used a quantitative microbiological risk assessment model to describe the risk of Campylobacter and Salmonella infection linked to chicken meals prepared in households in Dakar, Senegal. The model uses data collected specifically for this study, such as the prevalence and level of bacteria on the neck skin of chickens bought in Dakar markets, time‐temperature profiles recorded from purchase to consumption, an observational survey of meal preparation in private kitchens, and detection and enumeration of pathogens on kitchenware and cooks’ hands. Thorough heating kills all bacteria present on chicken during cooking, but cross‐contamination of cooked chicken or ready‐to‐eat food prepared for the meal via kitchenware and cooks’ hands leads to a high expected frequency of pathogen ingestion. Additionally, significant growth of Salmonella is predicted during food storage at ambient temperature before and after meal preparation. These high exposures lead to a high estimated risk of campylobacteriosis and/or salmonellosis in Dakar households. The public health consequences could be amplified by the high level of antimicrobial resistance of Salmonella and Campylobacter observed in this setting. A significant decrease in the number of ingested bacteria and in the risk could be achieved through a reduction of the prevalence of chicken contamination at slaughter, and by the use of simple hygienic measures in the kitchen. There is an urgent need to reinforce the hygiene education of food handlers in Senegal.  相似文献   

11.
Foodborne disease caused by nontyphoidal Salmonella (NTS) is one of the most important food safety issues worldwide. The objectives of this study were to carry out microbial monitoring on the prevalence of NTS in commercial ground pork, investigate consumption patterns, and conduct a quantitative microbiological risk assessment (QMRA) that considers cross-contamination to determine the risk caused by consuming ground pork and ready-to-eat food contaminated during food handling in the kitchen in Chengdu, China. The food pathway of ground pork was simplified and assumed to be several units according to the actual situation and our survey data, which were collected from our research or references and substituted into the QMRA model for simulation. The results showed that the prevalence of NTS in ground pork purchased in Chengdu was 69.64% (95% confidence interval [CI], 60.2–78.0), with a mean contamination level of −0.164 log CFU/g. After general cooking, NTS in ground pork could be eliminated (contamination level of zero). The estimated probability of causing salmonellosis per day was 9.43E-06 (95% CI: 8.82E-06–1.00E-05), while the estimated salmonellosis cases per million people per year were 3442 (95% CI: 3218–3666). According to the sensitivity analysis, the occurrence of cross-contamination was the most important factor affecting the probability of salmonellosis. To reduce the risk of salmonellosis caused by NTS through ground pork consumption, reasonable hygiene prevention and control measures should be adopted during food preparation to reduce cross-contamination. This study provides valuable information for household cooking and food safety management in China.  相似文献   

12.
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready‐to‐eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose‐response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose‐response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose‐response models. To discuss strategies for modeling L. monocytogenes dose‐response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/ ). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose‐response. This article also discusses new insights on dose‐response modeling for L. monocytogenes and research opportunities to meet future needs.  相似文献   

13.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

14.
《Risk analysis》2018,38(5):1070-1084
Human exposure to bacteria resistant to antimicrobials and transfer of related genes is a complex issue and occurs, among other pathways, via meat consumption. In a context of limited resources, the prioritization of risk management activities is essential. Since the antimicrobial resistance (AMR) situation differs substantially between countries, prioritization should be country specific. The objective of this study was to develop a systematic and transparent framework to rank combinations of bacteria species resistant to selected antimicrobial classes found in meat, based on the risk they represent for public health in Switzerland. A risk assessment model from slaughter to consumption was developed following the Codex Alimentarius guidelines for risk analysis of foodborne AMR. Using data from the Swiss AMR monitoring program, 208 combinations of animal species/bacteria/antimicrobial classes were identified as relevant hazards. Exposure assessment and hazard characterization scores were developed and combined using multicriteria decision analysis. The effect of changing weights of scores was explored with sensitivity analysis. Attributing equal weights to each score, poultry‐associated combinations represented the highest risk. In particular, contamination with extended‐spectrum β‐lactamase/plasmidic AmpC‐producing Escherichia coli in poultry meat ranked high for both exposure and hazard characterization. Tetracycline‐ or macrolide‐resistant Enterococcus spp., as well as fluoroquinolone‐ or macrolide‐resistant Campylobacter jejuni , ranked among combinations with the highest risk. This study provides a basis for prioritizing future activities to mitigate the risk associated with foodborne AMR in Switzerland. A user‐friendly version of the model was provided to risk managers; it can easily be adjusted to the constantly evolving knowledge on AMR.  相似文献   

15.
The World Trade Organization introduced the concept of appropriate level of protection (ALOP) as a public health target. For this public health objective to be interpretable by the actors in the food chain, the concept of food safety objective (FSO) was proposed by the International Commission on Microbiological Specifications for Foods and adopted later by the Codex Alimentarius Food Hygiene Committee. The way to translate an ALOP into a FSO is still in debate. The purpose of this article is to develop a methodological tool to derive a FSO from an ALOP being expressed as a maximal annual marginal risk. We explore the different models relating the annual marginal risk to the parameters of the FSO depending on whether the variability in the survival probability and in the concentration of the pathogen are considered or not. If they are not, determination of the FSO is straightforward. If they are, we propose to use stochastic Monte Carlo simulation models and logistic discriminant analysis in order to determine which sets of parameters are compatible with the ALOP. The logistic discriminant function was chosen such that the kappa coefficient is maximized. We illustrate this method by the example of the risks of listeriosis and salmonellosis in one type of soft cheese. We conclude that the definition of the FSO should integrate three dimensions: the prevalence of contamination, the average concentration per contaminated typical serving, and the dispersion of the concentration among those servings.  相似文献   

16.
Consumer Phase Risk Assessment for Listeria monocytogenes in Deli Meats   总被引:1,自引:0,他引:1  
The foodborne disease risk associated with the pathogen Listeria monocytogenes has been the subject of recent efforts in quantitative microbial risk assessment. Building upon one of these efforts undertaken jointly by the U.S. Food and Drug Administration and the U.S. Department of Agriculture (USDA), the purpose of this work was to expand on the consumer phase of the risk assessment to focus on handling practices in the home. One-dimensional Monte Carlo simulation was used to model variability in growth and cross-contamination of L. monocytogenes during food storage and preparation of deli meats. Simulations approximated that 0.3% of the servings were contaminated with >10(4) CFU/g of L. monocytogenes at the time of consumption. The estimated mean risk associated with the consumption of deli meats for the intermediate-age population was approximately 7 deaths per 10(11) servings. Food handling in homes increased the estimated mean mortality by 10(6)-fold. Of all the home food-handling practices modeled, inadequate storage, particularly refrigeration temperatures, provided the greatest contribution to increased risk. The impact of cross-contamination in the home was considerably less. Adherence to USDA Food Safety and Inspection Service recommendations for consumer handling of ready-to-eat foods substantially reduces the risk of listeriosis.  相似文献   

17.
Evaluations of Listeria monocytogenes dose‐response relationships are crucially important for risk assessment and risk management, but are complicated by considerable variability across population subgroups and L. monocytogenes strains. Despite difficulties associated with the collection of adequate data from outbreak investigations or sporadic cases, the limitations of currently available animal models, and the inability to conduct human volunteer studies, some of the available data now allow refinements of the well‐established exponential L. monocytogenes dose response to more adequately represent extremely susceptible population subgroups and highly virulent L. monocytogenes strains. Here, a model incorporating adjustments for variability in L. monocytogenes strain virulence and host susceptibility was derived for 11 population subgroups with similar underlying comorbidities using data from multiple sources, including human surveillance and food survey data. In light of the unique inherent properties of L. monocytogenes dose response, a lognormal‐Poisson dose‐response model was chosen, and proved able to reconcile dose‐response relationships developed based on surveillance data with outbreak data. This model was compared to a classical beta‐Poisson dose‐response model, which was insufficiently flexible for modeling the specific case of L. monocytogenes dose‐response relationships, especially in outbreak situations. Overall, the modeling results suggest that most listeriosis cases are linked to the ingestion of food contaminated with medium to high concentrations of L. monocytogenes. While additional data are needed to refine the derived model and to better characterize and quantify the variability in L. monocytogenes strain virulence and individual host susceptibility, the framework derived here represents a promising approach to more adequately characterize the risk of listeriosis in highly susceptible population subgroups.  相似文献   

18.
Currently, there is a growing preference for convenience food products, such as ready-to-eat (RTE) foods, associated with long refrigerated shelf-lives, not requiring a heat treatment prior to consumption. Because Listeria monocytogenes is able to grow at refrigeration temperatures, inconsistent temperatures during production, distribution, and at consumer's household may allow for the pathogen to thrive, reaching unsafe limits. L. monocytogenes is the causative agent of listeriosis, a rare but severe human illness, with high fatality rates, transmitted almost exclusively by food consumption. With the aim of assessing the quantitative microbial risk of L. monocytogenes in RTE chicken salads, a challenge test was performed. Salads were inoculated with a three-strain mixture of cold-adapted L. monocytogenes and stored at 4, 12, and 16 °C for eight days. Results revealed that the salad was able to support L. monocytogenes’ growth, even at refrigeration temperatures. The Baranyi primary model was fitted to microbiological data to estimate the pathogen's growth kinetic parameters. Temperature effect on the maximum specific growth rate (μmax) was modeled using a square-root-type model. Storage temperature significantly influenced μmax of L. monocytogenes (p < 0.05). These predicted growth models for L. monocytogenes were subsequently used to develop a quantitative microbial risk assessment, estimating a median number of 0.00008726 listeriosis cases per year linked to the consumption of these RTE salads. Sensitivity analysis considering different time–temperature scenarios indicated a very low median risk per portion (<−7 log), even if the assessed RTE chicken salad was kept in abuse storage conditions.  相似文献   

19.
Yacov Y. Haimes 《Risk analysis》2011,31(8):1175-1186
This article highlights the complexity of the quantification of the multidimensional risk function, develops five systems‐based premises on quantifying the risk of terrorism to a threatened system, and advocates the quantification of vulnerability and resilience through the states of the system. The five premises are: (i) There exists interdependence between a specific threat to a system by terrorist networks and the states of the targeted system, as represented through the system's vulnerability, resilience, and criticality‐impact. (ii) A specific threat, its probability, its timing, the states of the targeted system, and the probability of consequences can be interdependent. (iii) The two questions in the risk assessment process: “What is the likelihood?” and “What are the consequences?” can be interdependent. (iv) Risk management policy options can reduce both the likelihood of a threat to a targeted system and the associated likelihood of consequences by changing the states (including both vulnerability and resilience) of the system. (v) The quantification of risk to a vulnerable system from a specific threat must be built on a systemic and repeatable modeling process, by recognizing that the states of the system constitute an essential step to construct quantitative metrics of the consequences based on intelligence gathering, expert evidence, and other qualitative information. The fact that the states of all systems are functions of time (among other variables) makes the time frame pivotal in each component of the process of risk assessment, management, and communication. Thus, risk to a system, caused by an initiating event (e.g., a threat) is a multidimensional function of the specific threat, its probability and time frame, the states of the system (representing vulnerability and resilience), and the probabilistic multidimensional consequences.  相似文献   

20.
The objective of this study was to leverage quantitative risk assessment to investigate possible root cause(s) of foodborne illness outbreaks related to Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) infections in leafy greens in the United States. To this end, we developed the FDA leafy green quantitative risk assessment epidemic curve prediction model (FDA-LG QRA-EC) that simulated the lettuce supply chain. The model was used to predict the number of reported illnesses and the epidemic curve associated with lettuce contaminated with STEC O157 for a wide range of scenarios representing various contamination conditions and facility processing/sanitation practices. Model predictions were generated for fresh-cut and whole lettuce, quantifying the differing impacts of facility processing and home preparation on predicted illnesses. Our model revealed that the timespan (i.e., number of days with at least one reported illness) and the peak (i.e., day with the most predicted number of reported illnesses) of the epidemic curve of a STEC O157-lettuce outbreak were not strongly influenced by facility processing/sanitation practices and were indications of contamination pattern among incoming lettuce batches received by the facility or distribution center. Through comparisons with observed number of illnesses from recent STEC O157-lettuce outbreaks, the model identified contamination conditions on incoming lettuce heads that could result in an outbreak of similar size, which can be used to narrow down potential root cause hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号